Comparisons of improved genomic predictions generated by different imputation methods for genotyping by sequencing data in livestock populations

Author:

Wang Xiao,Su Guosheng,Hao Dan,Lund Mogens Sandø,Kadarmideen Haja N.ORCID

Abstract

Abstract Background Genotyping by sequencing (GBS) still has problems with missing genotypes. Imputation is important for using GBS for genomic predictions, especially for low depths, due to the large number of missing genotypes. Minor allele frequency (MAF) is widely used as a marker data editing criteria for genomic predictions. In this study, three imputation methods (Beagle, IMPUTE2 and FImpute software) based on four MAF editing criteria were investigated with regard to imputation accuracy of missing genotypes and accuracy of genomic predictions, based on simulated data of livestock population. Results Four MAFs (no MAF limit, MAF ≥ 0.001, MAF ≥ 0.01 and MAF ≥ 0.03) were used for editing marker data before imputation. Beagle, IMPUTE2 and FImpute software were applied to impute the original GBS. Additionally, IMPUTE2 also imputed the expected genotype dosage after genotype correction (GcIM). The reliability of genomic predictions was calculated using GBS and imputed GBS data. The results showed that imputation accuracies were the same for the three imputation methods, except for the data of sequencing read depth (depth) = 2, where FImpute had a slightly lower imputation accuracy than Beagle and IMPUTE2. GcIM was observed to be the best for all of the imputations at depth = 4, 5 and 10, but the worst for depth = 2. For genomic prediction, retaining more SNPs with no MAF limit resulted in higher reliability. As the depth increased to 10, the prediction reliabilities approached those using true genotypes in the GBS loci. Beagle and IMPUTE2 had the largest increases in prediction reliability of 5 percentage points, and FImpute gained 3 percentage points at depth = 2. The best prediction was observed at depth = 4, 5 and 10 using GcIM, but the worst prediction was also observed using GcIM at depth = 2. Conclusions The current study showed that imputation accuracies were relatively low for GBS with low depths and high for GBS with high depths. Imputation resulted in larger gains in the reliability of genomic predictions for GBS with lower depths. These results suggest that the application of IMPUTE2, based on a corrected GBS (GcIM) to improve genomic predictions for higher depths, and FImpute software could be a good alternative for routine imputation.

Funder

Danish Council of Strategic Research

China Scholarship Council

Danmarks Tekniske Universitet

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3