Dietary fibers with low hydration properties exacerbate diarrhea and impair intestinal health and nutrient digestibility in weaned piglets

Author:

Huang Shuangbo,Cui Zhijuan,Hao Xiangyu,Cheng Chuanhui,Chen Jianzhao,Wu Deyuan,Luo Hefeng,Deng Jinping,Tan Chengquan

Abstract

Abstract Background This study aimed to investigate the hydration properties of different-source fibrous materials by comparing their water-binding capacity (WBC), water swelling capacity (WSC), viscosity, and in vivo effects of selected samples on growth performance, nutrient digestibility, diarrhea, and intestinal health in weaned piglets. Methods A total of 13 commercially available fibrous materials were first compared in chemical composition and in vitro hydration property. Subsequently, 40 weaned piglets were randomized to five experimental dietary groups (8 piglets per group): control diet (a basal diet without dietary fiber, CON), basal diet supplemented with 5% microcrystalline cellulose (MCC), 5% wheat bran (WB), 5% Moringaoleifera leaf powder (MOLP), or 5% sugar beet pulp (SBP), followed by analyzing their growth performance and diarrhea rate in a 28-d experiment. After the feeding experiment, anaesthetized piglets were killed, and their intestinal and colon content or plasma samples were analyzed in nutrient digestibility, intestinal morphology, intestinal barrier, short-chain fatty acids (SCFAs), and bacterial population. Results In vitro studies showed low hydration properties for WB and MCC, while medium hydration properties for MOLP and SBP. In vivo studies indicated that compared with medium hydration property groups, low hydration property groups showed (1) exacerbated diarrhea, impaired intestinal health, and reduced apparent fecal digestibility of dry matter, gross energy, acid detergent fiber, and neutral detergent fiber; (2) decreased SCFAs concentration and relative levels of Lactobacillus and Bifidobacterium, but increased levels of Escherichia coli and Brachyspira hyodysenteriae in colon contents. Additionally, SBP showed optimal performance in reducing diarrhea and increasing SCFAs production. Correlation analysis revealed a positive correlation of fiber hydration properties with in vitro SCFAs production, and diarrhea index and nutrient digestibility were negatively and positively correlated with SCFAs levels in the colon contents of weaned piglets, respectively. Conclusions Different-source dietary fibers varied in their hydration properties and impacts on diarrhea, microbial composition and SCFAs production in weaned piglets. WB and MCC could exacerbate diarrhea and impair nutrient digestibility, probably because their low hydration properties were detrimental to gut microbial homeostasis and fermentation. Our findings provide new ideas for rational use of fiber resources in weaned piglets.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Natural Science Foundation of Guangzhou City

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3