Abstract
AbstractTransgenerational effects of certain nutrients such as essential fatty acids are gaining increased attention in the field of human medicine and animal sciences as a new tool to improve health and animal performance during perinatal life. Omega-3 (n-3) and omega-6 (n-6) fatty acids are denoted by the position of the first double bond from methyl end of the hydrocarbon chain. Alpha-linolenic acid (18:3 n-3) and linoleic acid (18:2 n-6) are essential n-3 and n-6 fatty acids and cannot be synthesized by the vertebrates including chickens. Alpha-linolenic acid and linoleic acid are the parent fatty acids of long chain (> 20–22C) n-3 and n-6 polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (20:5 n-3, EPA), docosapentaenoic acid (22:5 n-3/or 22:5 n-6, DPA), docosahexaenoic acid (22:6 n-3, DHA) and arachidonic acid (20:4 n-6). As components of cell membrane phospholipids, PUFA serves as precursors of eicosanoids, act as ligands for membrane receptors and transcription factors that regulate gene expression and are pivotal for normal chick growth and development. Considering the role of egg lipids as the sole source of essential fatty acids to the hatchling, dietary deficiencies or inadequate in ovo supply may have repercussions in tissue PUFA incorporation, lipid metabolism, chick growth and development during pre and early post-hatch period. This review focus on studies showing how maternal dietary n-3 or n-6 fatty acids can lead to remodeling of long chain n-3 and n-6 PUFA in the hatching egg and progeny chick tissue phospholipid molecular species and its impact on chick growth and PUFA metabolism during early life.
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology,Biochemistry,Food Science,Biotechnology