The protective roles of tea tree oil extracts in bovine mammary epithelial cells and polymorphonuclear leukocytes

Author:

Zhan Kang,Yang Tianyu,Feng Baobao,Zhu Xinyu,Chen Yinyin,Huo Yongjiu,Zhao GuoqiORCID

Abstract

Abstract Background Tea tree oil (TTO) plays an important role in antibacterial activity and alleviating the inflammatory responses. Bovine mammary epithelium and polymorphonuclear leukocytes (PMNL) can actively respond to bovine mastitis infection. However, regulatory effects of TTO extracts on the innate immune response of bovine mammary epithelial cells (BMECs) and PMNL remain not reported. Therefore, aim of the study was to evaluate the effects of TTO extracts on the mRNA levels of the genes involved in the innate immune response of BMECs and PMNL. Results Our results demonstrated that addition of 0.025% and 0.05% TTO increased the proliferation of BMECs, and significantly enhanced (P < 0.05) the viability of BMECs exposed to Staphylococcus aureus (S. aureus). An inhibitory effect was observed against the growth of S. aureus by TTO incubation. The 0.05% TTO reduced S. aureus biofilm formation, association and invasion of S. aureus to BMECs, and changed the morphological and structural features of S. aureus. The proinflammatory cytokines IL-1β, IL-6, and TNF-α were decreased (P < 0.001) by the incubation of TTO. Interestingly, the expression of IL-8 known for PMNL chemotactic function was elevated (P < 0.05) by 0.05% TTO treatment. Consistently, 0.05% TTO increased the migration of PMNL in S. aureus-exposed BMECs when compared with S. aureus treatment alone (P < 0.05). In addition, PMNL incubated with 0.05% TTO decreased the levels of NFKB inhibitor alpha (NFKBIA) and TNF-α. Conclusions Our results indicate that use of TTO can relieve the BMECs pro-inflammatory response caused by S. aureus and promote the migration of PMNL to mount the innate immune responses, and it may be novel strategy for the treatment of bovine mastitis caused by S. aureus.

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3