Coated sodium butyrate ameliorates high-energy and low-protein diet induced hepatic dysfunction via modulating mitochondrial dynamics, autophagy and apoptosis in laying hens

Author:

Miao Sasa,Mu Tianming,Li Ru,Li Yan,Zhao Wenyan,Li Jiankui,Dong Xinyang,Zou Xiaoting

Abstract

Abstract Background Fatty liver hemorrhagic syndrome (FLHS), a fatty liver disease in laying hens, poses a grave threat to the layer industry, stemming from its ability to trigger an alarming plummet in egg production and usher in acute mortality among laying hens. Increasing evidence suggests that the onset and progression of fatty liver was closely related to mitochondria dysfunction. Sodium butyrate was demonstrated to modulate hepatic lipid metabolism, alleviate oxidative stress and improve mitochondrial dysfunction in vitro and mice models. Nevertheless, there is limited existing research on coated sodium butyrate (CSB) to prevent FLHS in laying hens, and whether and how CSB exerts the anti-FLHS effect still needs to be explored. In this experiment, the FLHS model was induced by administering a high-energy low-protein (HELP) diet in laying hens. The objective was to investigate the effects of CSB on alleviating FLHS with a focus on the role of CSB in modulating mitochondrial function. Methods A total of 288 healthy 28-week-old Huafeng laying hens were arbitrarily allocated into 4 groups with 6 replicates each, namely, the CON group (normal diet), HELP group (HELP diet), CH500 group (500 mg/kg CSB added to HELP diet) and CH750 group (750 mg/kg CSB added to HELP diet). The duration of the trial encompassed a period of 10 weeks. Results The result revealed that CSB ameliorated the HELP-induced FLHS by improving hepatic steatosis and pathological damage, reducing the gene levels of fatty acid synthesis, and promoting the mRNA levels of key enzymes of fatty acid catabolism. CSB reduced oxidative stress induced by the HELP diet, upregulated the activity of GSH-Px and SOD, and decreased the content of MDA and ROS. CSB also mitigated the HELP diet-induced inflammatory response by blocking TNF-α, IL-1β, and F4/80. In addition, dietary CSB supplementation attenuated HELP-induced activation of the mitochondrial unfolded protein response (UPRmt), mitochondrial damage, and decline of ATPase activity. HELP diet decreased the autophagosome formation, and downregulated LC3B but upregulated p62 protein expression, which CSB administration reversed. CSB reduced HELP-induced apoptosis, as indicated by decreases in the Bax/Bcl-2, Caspase-9, Caspase-3, and Cyt C expression levels. Conclusions Dietary CSB could ameliorate HELP diet-induced hepatic dysfunction via modulating mitochondrial dynamics, autophagy, and apoptosis in laying hens. Consequently, CSB, as a feed additive, exhibited the capacity to prevent FLHS by modulating autophagy and lipid metabolism. Graphical Abstract

Funder

the Science and Technology Development project of Hangzhou

Twinning service plan of the Zhejiang Provincial Team Science

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3