Net absorption and liver metabolism of amino acids and heat production of portal-drained viscera and liver in multiparous sows during transition and lactation

Author:

Hu Liang,Kristensen Niels Bastian,Che Lianqiang,Wu De,Theil Peter KappelORCID

Abstract

Abstract Background Determination of nutrient requirements in the late gestating and lactating sows is essential to optimize sow productivity. The objectives of the present study were to quantify amino acid (AA) fluxes and heat production across portal-drained viscera (PDV) and liver in multiparous sows during transition and lactation. Methods Eight second parity sows were fitted with indwelling catheters in the femoral artery and in the mesenteric, portal and hepatic veins. Eight hourly sets of blood samples were taken starting 0.5 h before feeding at − 10, − 3, + 3, and + 17 d in milk (DIM). Blood gases, plasma metabolites and apparent total tract digestibility (ATTD) of nutrients were measured. Results Feed intake, the ATTD of DM, energy, nitrogen, fat and crude fiber changed with DIM (P < 0.001). Except for Glu, O2, and urea, all net portal fluxes were positive, and all were affected by DIM (P < 0.05) and by sampling time (P < 0.01). Compared with pre partum levels, net portal uptake of AA was 3-63% lower at + 3 DIM but 40-100% higher at + 17 DIM. Net portal fluxes of AA peaked at 1.5 to 2.5 h after feeding except for Glu, and they were positively correlated with changes in sow feed intake across DIM. The net portal recovery was low for Met (49%), Thr (54%), and His (54%) and high for the remaining essential AA (63-69%) and none of them differed across DIM. Net hepatic uptake (i.e. hepatic oxidation) of Lys, Thr, Ile, Leu and Phe peaked at 0.5 to 2.5 h after feeding, whereas uptake of Trp, Val, and His was constant, while that of Met was close to zero. Conclusion The net portal recovery was substantially lower for Met, Thr, and His than the remaining essential AA. Hepatic AA oxidation peaks 0.5 to 2.5 h after feeding. The heat production in PDV and liver was approximately two-fold higher at peak lactation compared to other stages. The study suggests that lysine was the limiting AA in peak lactation but not in early lactation.

Funder

Danish Pig Levy Fund

Aarhus University

China Scholarship Council

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3