Dietary Zn proteinate with moderate chelation strength alleviates heat stress-induced intestinal barrier function damage by promoting expression of tight junction proteins via the A20/NF-κB p65/MMP-2 pathway in the jejunum of broilers

Author:

Hu Yangyang,Zhang Weiyun,Yang Ke,Lin Xi,Liu Hsiao-Ching,Odle Jack,See Miles Todd,Cui Xiaoyan,Li Tingting,Wang Shengchen,Liao Xiudong,Zhang Liyang,Li Sufen,Hu Yun,Luo Xugang

Abstract

Abstract Background The aim of this study was to determine whether and how Zn proteinate with moderate chelation strength (Zn-Prot M) can alleviate heat stress (HS)-induced intestinal barrier function damage of broilers. A completely randomized design was used for comparatively testing the effects of Zn proteinate on HS and non-HS broilers. Under high temperature (HT), a 1 (Control, HT-CON) + 2 (Zn source) × 2 (added Zn level) factorial arrangement of treatments was used. The 2 added Zn sources were Zn-Prot M and Zn sulfate (ZnS), and the 2 added Zn levels were 30 and 60 mg/kg. Under normal temperature (NT), a CON group (NT-CON) and pair-fed group (NT-PF) were included. Results The results showed that HS significantly reduced mRNA and protein expression levels of claudin-1, occludin, junctional adhesion molecule-A (JAMA), zonula occludens-1 (ZO-1) and zinc finger protein A20 (A20) in the jejunum, and HS also remarkably increased serum fluorescein isothiocyanate dextran (FITC-D), endotoxin and interleukin (IL)-1β contents, serum diamine oxidase (DAO) and matrix metalloproteinase (MMP)-2 activities, nuclear factor kappa-B (NF-κB) p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum. However, dietary supplementation with Zn, especially organic Zn as Zn-Prot M at 60 mg/kg, significantly decreased serum FITC-D, endotoxin and IL-1β contents, serum DAO and MMP-2 activities, NF-κB p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum of HS broilers, and notably promoted mRNA and protein expression levels of claudin-1, ZO-1 and A20. Conclusions Our results suggest that dietary Zn, especially 60 mg Zn/kg as Zn-Prot M, can alleviate HS-induced intestinal barrier function damage by promoting the expression of TJ proteins possibly via induction of A20-mediated suppression of the NF-κB p65/MMP-2 pathway in the jejunum of HS broilers.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3