Multi-omics reveals that the host-microbiome metabolism crosstalk of differential rumen bacterial enterotypes can regulate the milk protein synthesis of dairy cows

Author:

Zhang Chenguang,Wang Mengya,Liu Huifeng,Jiang Xingwei,Chen Xiaodong,Liu Tao,Yin Qingyan,Wang Yue,Deng Lu,Yao Junhu,Wu ShengruORCID

Abstract

Abstract Background Dairy cows’ lactation performance is the outcome of the crosstalk between ruminal microbial metabolism and host metabolism. However, it is still unclear to what extent the rumen microbiome and its metabolites, as well as the host metabolism, contribute to regulating the milk protein yield (MPY). Methods The rumen fluid, serum and milk of 12 Holstein cows with the same diet (45% coarseness ratio), parity (2–3 fetuses) and lactation days (120–150 d) were used for the microbiome and metabolome analysis. Rumen metabolism (rumen metabolome) and host metabolism (blood and milk metabolome) were connected using a weighted gene co-expression network (WGCNA) and the structural equation model (SEM) analyses. Results Two different ruminal enterotypes, with abundant Prevotella and Ruminococcus, were identified as type1 and type2. Of these, a higher MPY was found in cows with ruminal type2. Interestingly, [Ruminococcus] gauvreauii group and norank_f_Ruminococcaceae (the differential bacteria) were the hub genera of the network. In addition, differential ruminal, serum and milk metabolome between enterotypes were identified, where the cows with type2 had higher L-tyrosine of rumen, ornithine and L-tryptophan of serum, and tetrahydroneopterin, palmitoyl-L-carnitine, S-lactoylglutathione of milk, which could provide more energy and substrate for MPY. Further, based on the identified modules of ruminal microbiome, as well as ruminal serum and milk metabolome using WGCNA, the SEM analysis indicated that the key ruminal microbial module1, which contains the hub genera of the network ([Ruminococcus] gauvreauii group and norank_f_Ruminococcaceae) and high abundance of bacteria (Prevotella and Ruminococcus), could regulate the MPY by module7 of rumen, module2 of blood, and module7 of milk, which contained L-tyrosine and L-tryptophan. Therefore, in order to more clearly reveal the process of rumen bacterial regulation of MPY, we established the path of SEM based on the L-tyrosine, L-tryptophan and related components. The SEM based on the metabolites suggested that [Ruminococcus] gauvreauii group could inhibit the energy supply of serum tryptophan to MPY by milk S-lactoylglutathione, which could enhance pyruvate metabolism. Norank_f_Ruminococcaceae could increase the ruminal L-tyrosine, which could provide the substrate for MPY. Conclusion Our results indicated that the represented enterotype genera of Prevotella and Ruminococcus, and the hub genera of [Ruminococcus] gauvreauii group and norank_f_Ruminococcaceae could regulate milk protein synthesis by affecting the ruminal L-tyrosine and L-tryptophan. Moreover, the combined analysis of enterotype, WGCNA and SEM could be used to connect rumen microbial metabolism with host metabolism, which provides a fundamental understanding of the crosstalk between host and microorganisms in regulating the synthesis of milk composition.

Funder

National Natural Science Foundation of China

Shaanxi Provincial Science and Technology Association Young Talents Lifting Program Project

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3