Selenoproteins synergistically protect porcine skeletal muscle from oxidative damage via relieving mitochondrial dysfunction and endoplasmic reticulum stress

Author:

Jing Jinzhong,He Ying,Liu Yan,Tang Jiayong,Wang Longqiong,Jia Gang,Liu Guangmang,Chen Xiaoling,Tian Gang,Cai Jingyi,Che Lianqiang,Kang Bo,Zhao HuaORCID

Abstract

Abstract Background The skeletal muscle of pigs is vulnerable to oxidative damage, resulting in growth retardation. Selenoproteins are important components of antioxidant systems for animals, which are generally regulated by dietary selenium (Se) level. Here, we developed the dietary oxidative stress (DOS)-inducing pig model to investigate the protective effects of selenoproteins on DOS-induced skeletal muscle growth retardation. Results Dietary oxidative stress caused porcine skeletal muscle oxidative damage and growth retardation, which is accompanied by mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and protein and lipid metabolism disorders. Supplementation with Se (0.3, 0.6 or 0.9 mg Se/kg) in form of hydroxy selenomethionine (OH-SeMet) linearly increased muscular Se deposition and exhibited protective effects via regulating the expression of selenotranscriptome and key selenoproteins, which was mainly reflected in lower ROS levels and higher antioxidant capacity in skeletal muscle, and the mitigation of mitochondrial dysfunction and ER stress. What's more, selenoproteins inhibited DOS induced protein and lipid degradation and improved protein and lipid biosynthesis via regulating AKT/mTOR/S6K1 and AMPK/SREBP-1 signalling pathways in skeletal muscle. However, several parameters such as the activity of GSH-Px and T-SOD, the protein abundance of JNK2, CLPP, SELENOS and SELENOF did not show dose-dependent changes. Notably, several key selenoproteins such as MSRB1, SELENOW, SELENOM, SELENON and SELENOS play the unique roles during this protection. Conclusions Increased expression of selenoproteins by dietary OH-SeMet could synergistically alleviate mitochondrial dysfunction and ER stress, recover protein and lipid biosynthesis, thus alleviate skeletal muscle growth retardation. Our study provides preventive measure for OS-dependent skeletal muscle retardation in livestock husbandry.

Funder

National Natural Science Foundation of China

Special Research Funding for Discipline Construction in Sichuan Agricultural University

Adisseo France

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3