Anticancer effect of black tea extract in human cancer cell lines

Author:

Koňariková Katarína,Ježovičová Miriam,Keresteš Ján,Gbelcová Helena,Ďuračková Zdeňka,Žitňanová Ingrid

Abstract

Abstract In this study we investigated effects of natural extract from the black tea Camellia sinensis (BTE) against human colon carcinoma cell line HT-29, human breast carcinoma cell line MCF-7, human alveolar carcinoma cell line A549 and healthy cell line NIH-3T3. We identified concentration range for cytotoxic/antiproliferative effects using MTT assay and the trypan blue assay, gel electrophoresis we employed to determine the type of cell death induced by BTE and DNA damage we determined by comet assay. Different concentrations of the extract (0.00078 - 5 μg/mL) we added to the cultured cells and incubated for 216 h. BTE showed cytotoxic effects against all carcinoma cell lines, however HT-29 and MCF-7 cells were more sensitive than A549. BTE showed no antiproliferative effect against healthy cells NIH-3T3 at tested concentrations. We found no apoptotic cell death in HT-29 and MCF-7 cells after 72 h of incubation in case of single administration of BTE but in case of repetitive administration of BTE (BTE was added to the cells each day) we found apoptotic cell death in HT-29 after 72 h incubation. BTE induced also DNA strand breaks and oxidative damage to DNA in carcinoma cells HT-29 and MCF-7.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference31 articles.

1. Brizuela L, Cuvillier O (2014) Polyphenols in Human Health and Disease. In: Brizuela L (ed) Polyphenols in Prostate Cancer, vol 1. Academic press, London, pp 1217–1230

2. Collins AR, Dusinska M, Gedik CM, Stetina R (1993) Oxidative damage to DNA: do we have a reliable biomarker? Carcinog 14:1733–1735

3. Collins AR, Dobson VL, Dusinska M, Kennedy G, Stetina R (1997) Comet assay: What can it really tell us? Mutat Res 375:183–193

4. Dvořáková M, Paduchová Z, Muchová J, Duračková Z, Collins AR (2010) How does pycnogenol® influence oxidative damage to DNA and its repair ability in elderly people? Prague Med Rep 111(4):263–271

5. Feng Q, Torii Y, Uchida K, Nakamura Y, Hara Y, Osawa T (2002) Black tea polyphenols, theaflavins, prevent cellular DNA damage by inhibiting oxidative stress and suppressing cytochrome P450 1A1 in cell cultures. J Agric Food Chem 50(1):213–222

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3