A hybrid multi-path routing algorithm for industrial wireless mesh networks

Author:

Zuo Yun,Ling Zhihao,Yuan Yifeng

Abstract

Abstract Multi-path routing, a routing technique that enables data transmission over multiple paths, is an effective strategy in achieving reliability in wireless sensor networks. However, multi-path routing does not guarantee deterministic transmission. This is because more than one path is available for transferring data from the source node to the destination node. A hybrid multi-path routing algorithm is proposed for industrial wireless mesh networks for improving reliability and determinacy of data transmission, as well as to effectively deal with link failures. The proposed algorithm adopts the enhanced Dijkstra’s algorithm for searching the shortest route from the gateway to each end node for first route setup. A virtual pheromone distinct from the regular pheromone is introduced to realize pheromone diffusion and updating. In this way, multiple routes are searched based on the ant colony optimization algorithm. The routes used for data transmission are selected based on their regular pheromone values, facilitating the delivery of data through better routes. Link failures are then handled using route maintenance mechanism. Simulation results demonstrate that the proposed algorithm outperforms traditional algorithms in terms of average end-to-end delay, packet delivery ratio, and routing overhead; moreover, it has a strong capacity to cope with topological changes, thereby making it more suitable for industrial wireless mesh networks.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Reference26 articles.

1. HART Communication Foundation: HART7 Overview and Summary (Technical Documentation). Austin; 2007.

2. Perkins CE, Bhagwat P: Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. ACM SIGCOMM Computer Communication Review 1994. 24 (4), 234–244

3. Perkins CE, Royer EM: Ad hoc on-demand distance vector routing. In Proceedings of IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’ 99). New Orleans;  . 25–26 February 1999, pp. 90–100

4. Haas ZJ, Pearlman MR: The zone routing protocol: a hybrid framework for routing in ad hoc networks. In Ad Hoc Networking. Edited by: Perkins CE. Addison-Wesley: Reading, MA; 2001:221-254.

5. Nasipuri A, Castaneda R, Das SR: Performance of multipath routing for on-demand protocols in mobile ad hoc networks. Mob. Netw. Appl. 2001, 6(4):339-349. 10.1023/A:1011426611520

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3