Author:
Yamaura Hirofumi,Kaneko Megumi,Hayashi Kazunori,Sakai Hideaki
Abstract
Abstract
We propose a relaying scheme based on superposition coding (SC) with discrete adaptive modulation and coding (AMC) for a three-node wireless relay system, based on half duplex transmission, where each node decodes messages by successive interference cancelation (SIC). Unlike the previous works where the transmission rate of each link is assumed to achieve Gaussian channel capacity, we design a practical superposition-coded relaying scheme with discrete AMC while taking into account the effect of decoding errors at each stage of the SIC process at each node. In our scheme, hierarchical modulation (HM) is used to create an SC message composed of one basic and one superposed message with optimized power allocation. We firstly introduce the proposed scheme without forward error correction (FEC) for high signal-to-noise ratio (SNR) region and provide the optimal power allocation between the superimposed messages. Next, we extend the uncoded scheme to incorporate FEC to overcome bad channel conditions. The power allocation in this case is based on an approximated expression of the bit error rate (BER). Numerical results show the performance gains of the proposed SC relaying scheme with HM compared to conventional schemes, over a large range of SNRs.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献