Carrier frequency offset estimation method for 2 × 1 MISO TDS-OFDM systems

Author:

Oh Jong Gyu,Heo Jun,Kim Joon Tae

Abstract

Abstract In time-domain synchronous (TDS)-orthogonal frequency division multiplexing (OFDM) systems, a pseudo noise (PN) sequence is inserted instead of the cyclic prefix. The PN sequence is used not only as a guard interval but also as a training sequence for channel estimation and synchronization in the time domain. Recently, research studies on 2 × 1 multi input-single output (MISO) TDS-OFDM systems have been conducted, and different PN sequences (which are orthogonal to one another or cyclically shifted) are transmitted at each transmit antenna for channel estimation, which are modulated by binary phase shift keying in the same phase angle. However, when the absolute phase difference among the transmitted PN sequences is π, a PN sequence cancellation problem occurs, making the estimation of an accurate carrier frequency offset (CFO) difficult. In this paper, a CFO estimation method with the aid of PN sequences for 2 × 1 MISO TDS-OFDM systems is proposed. In the proposed method, the phase of the PN sequences at each antenna is rotated differently and transmitted to prevent a PN sequence-canceling problem. In addition, a CFO estimation scheme using channel state information is proposed to estimate an accurate CFO in time-varying channels. We show by computer simulations that the mean square error performance of the proposed method over an additive white Gaussian noise environment and time-varying Rayleigh channel is higher than that of the conventional method.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimum Value of Cyclic Prefix (CP) to Reduce Bit Error Rate (BER) in OFDM;Advances in IoT and Security with Computational Intelligence;2023

2. Performance Evaluation and Analysis of OFDM signal using Discretization;International Journal of Recent Technology and Engineering (IJRTE);2022-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3