Energy-saving centric uplink scheduling scheme for broadband wireless access networks

Author:

Chen Yen-Wen,Chu Yen-Yin,Peng I-Hsuan

Abstract

Abstract This study proposes an energy-saving centric uplink scheduling (ESC-US) scheme to support efficient energy usage and satisfy the quality of service (QoS) requirements of Worldwide Interoperability for Microwave Access (WiMax) networks. The uplink resource allocation is different from that of the downlink resource allocation scheme because the uplink traffic is queued at the mobile station (MS) and the base station (BS) has no information regarding it without using a polling procedure. The considered resource scheduling schemes maximize the sleep efficiency and consider the QoS requirements of individual MSs. The proposed scheduling scheme in this study considers the delay budget of MSs with real-time connections and the required minimum reserved traffic rate (MRTR) of MSs with non-real time connections when maximizing sleep efficiency. Both scheduling schemes for the traffic of real-time polling services (rtPS) and non-real-time polling services (nrtPS) apply the ‘just enough QoS’ and ‘sleep before transmission’ (SbT) concepts to achieve this energy-saving centric objective. Exhaustive simulations were conducted to examine the performance of the proposed schemes. The simulation results show that both schemes guarantee the desired QoS and achieve superior energy-savings efficiencies compared to the conventional scheme.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Reference21 articles.

1. IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1, IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Cor 1-2005. 2006.

2. 3GPP TS 36.321 V1. 0.0 Access, Evolved Universal Terrestrial Radio: Medium Access Control (MAC) protocol specification (Release 8). 2008.

3. Lahiri K, Raghunathan A, Dey S: Battery-driven system design: a new frontier in low power design. Proceedings of the 7th Asia and South Pacific and the 15th International Conference on VLSI Design, Bangalore 2002, 261.

4. Miao G, Himayat N, Li Y, Swami A: Cross layer optimization for energy efficient wireless communications: a survey. Wirel. Commun. Mob. Comput. 2009, 9: 529-542. 10.1002/wcm.698

5. Miao G, Himayat N, Li GY, Talwar S: Low-complexity energy-efficient scheduling for uplink OFDMA. Commun. IEEE. Trans. 2012, 60: 112-120.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on State Dependent Radio Resource Scheduling for Downlink Traffic in LTE Networks;Wireless Personal Communications;2017-05-22

2. A load-aware weighted round-robin algorithm for IEEE 802.16 networks;EURASIP Journal on Wireless Communications and Networking;2014-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3