Author:
Liu Ming,Crussière Matthieu,Hélard Maryline,Hélard Jean-François
Abstract
Abstract
The 3D Multiple-input multiple-output (MIMO) code is a robust and efficient space-time block code (STBC) for the distributed MIMO broadcasting but suffers from high maximum-likelihood (ML) decoding complexity. In this paper, we first analyze some properties of the 3D MIMO code to show that the 3D MIMO code is fast decodable. It is proven that the ML decoding performance can be achieved with a complexity of O(M
4.5) instead of O(M
8) in quasi-static channel with M-ary square QAM modulations. Consequently, we propose a simplified ML decoder exploiting the unique properties of the 3D MIMO code. Simulation results show that the proposed simplified ML decoder can achieve much lower processing time latency compared to the classical sphere decoder with Schnorr-Euchner enumeration.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Reference30 articles.
1. Tarokh V, Seshadri N, Calderbank A: Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE Trans. Inf. Theory 1998, 44(2):744-765. 10.1109/18.661517
2. DVB: TM-MIMO. . Accessed 29 Jan 2014 http://www.dvb.org/groups/TM-MIMO
3. Nasser Y, Hélard JF, Crussière M: 3D MIMO scheme for broadcasting future digital TV in single-frequency networks. Electron. Lett 2008, 44(13):829-830. 10.1049/el:20080061
4. Liu M, Crussière M, Hélard M, Hélard JF: Distributed MIMO schemes for the future digital video broadcasting Paper presented at the 20th international conference on telecommunications (ICT). Casablanca, Morocco0; 6–8 May 2013.
5. Sharma N, Papadias CB: Full-rate full-diversity linear quasi-orthogonal space-time codes for any number of transmit antennas. EURASIP J. Appl. Signal Process 2004, 2004: 1246-1256. 10.1155/S1110865704402339