General optimization framework for surface gateway deployment problem in underwater sensor networks

Author:

Ibrahim Saleh,Al-Bzoor Manal,Liu Jun,Ammar Reda,Rajasekaran Sanguthevar,Cui Jun-Hong

Abstract

Abstract The performance of underwater sensor networks (UWSNs) is greatly limited by the low bandwidth and high propagation delay of acoustic communications. Deploying multiple surface-level radio-capable gateways can enhance UWSN performance metrics, reducing end-to-end delays and distributing traffic loads for energy reduction. In this paper, we study the problem of gateway placement for maximizing the cost-benefit of this UWSN architecture. We develop a mixed integer programming (MIP) gateway deployment optimization framework. We analyze the tradeoff between the number of surface gateways and the expected delay and energy consumption of the surface gateway architecture in the optimal case. We used an MIP solver to solve the developed optimization problem and integrated the optimal results to serve as an input for our simulations to evaluate the benefits of surface gateway optimization framework. We investigated the effect of acoustic channel capacity and the underwater sensor node deployment pattern on our solution. Our results show the significant advantages of surface gateway optimization and provide useful guidelines for real network deployment.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Directional Selective Power Routing Protocol for the Internet of Underwater Things;Wireless Communications and Mobile Computing;2022-02-08

2. Utilization of Multi-Sink Architectures for Lifetime Maximization in Underwater Sensor Networks;2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM);2019-11

3. Investigation of maximum lifetime and minimum delay trade-off in underwater sensor networks;International Journal of Communication Systems;2019-02-19

4. A Glider-Assisted Link Disruption Restoration Mechanism in Underwater Acoustic Sensor Networks;Sensors;2018-02-07

5. Decentralized placement of heterogeneous nodes;OCEANS 2016 MTS/IEEE Monterey;2016-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3