Evaluation of visible light communication channel delay profiles for automotive applications

Author:

Lee SeokJu,Kwon Jae Kyun,Jung Sung-Yoon,Kwon Young-Hoon

Abstract

Abstract In this article, we present channel delay profiles based on simulated data regarding the practical conditions for the use of visible light communication (VLC) in automotive applications such as Intelligent Transportation Systems (ITS). Practical vehicular LED headlamp and street lamp that consider the lighting regulation for transportation are used to design the ITS scenarios based on VLC. We modeled two usage scenarios, crossroad and metropolitan street, using the CATIA V5 tool. Measurements for the VLC channel delay profile evaluation were then gathered by using a ray-tracing scheme employing commercial LightTools software under the vehicle-to-vehicle and vehicle-to-infrastructure (V2I) communication links. From the obtained channel impulse responses from both scenarios, we derived the VLC channel delay profiles. From them, we found that the common property of the delay profile was composed of dominant multiple line of sight (LOS) links and a less number of non-LOS delay taps. However, the channel delay profile for the V2I link and metropolitan scenario show more dispersive channel characteristics due to the reflection and diffusion of the visible light.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Reference16 articles.

1. Komine T, Nakagawa M: Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 2004, 50(1):100-107. 10.1109/TCE.2004.1277847

2. Ntogari G, Kamalakis T, Walewski JW, Sphicopoulos T: Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone. J. IEEE/OSA 2011, 3(1):56-65.

3. IEEE Std 802.15.7, IEEE Standard for Local and metropolitan area networks— Part 15.7: Short-Range Wireless Optical Communication Using Visible Light. IEEE, Piscataway, NJ; 2011.

4. Richard D R, Sang-Kyu L, IEEE 802.15.7 Visible Light Communication: Modulation Schemes and Dimming Support. IEEE Commun. Mag 2011, 50(1):72-82.

5. Rahaim M, Miravakili A, Borogovac T, Little TDC, Joyner V: Demonstration of a software Defined Visible Light Communication System, in the 17th Annual International Conference on Mobile Computing and Networking, Mobicom2011. 2011.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3