Spectral broadening effects of high-power amplifiers in MIMO–OFDM relaying channels

Author:

Ahmad Ishtiaq,Sulyman Ahmed Iyanda,Alsanie Abdulhameed,Alasmari Awad Kh,Alshebeili Saleh A

Abstract

Abstract The combination of MIMO–OFDM is a very attractive solution for broadband wireless services. Thus, the two prominent fourth-generation (4G) cellular systems, WiMAX and LTE-advanced, have both adopted MIMO–OFDM transmission at the physical layer. OFDM signal however suffers from nonlinear distortions when passed through high-power amplifier (HPA) at the RF stage. This nonlinear distortion introduces out-of-band spectral broadening and in-band distortions on the transmitted signals. 4G cellular standards have placed strict limits on the allowable spectral broadening in their spectrum mask specifications, to insure that data transmission on a given channel is not interfering significantly with an adjacent channel user. In this article, we characterize the out-of-band spectral broadening introduced by HPA when MIMO–OFDM signals are transmitted over multiple relaying channels. Expressions for the power spectral density of MIMO–OFDM signals are derived over multiple relay channels, and the cumulative effects of HPA on the spectrum of the transmitted signals are estimated. It is shown that depending on the number of relays and the relaying configuration employed, it may happen that a transmitted MIMO–OFDM signal with the transmit spectrum mask initially within the allowable set limit at the source node arrives at the destination violating this limit due to the cumulative effects of the multiple HPA’s in a multihop relaying channel.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3