Author:
Ahmad Ishtiaq,Sulyman Ahmed Iyanda,Alsanie Abdulhameed,Alasmari Awad Kh,Alshebeili Saleh A
Abstract
Abstract
The combination of MIMO–OFDM is a very attractive solution for broadband wireless services. Thus, the two prominent fourth-generation (4G) cellular systems, WiMAX and LTE-advanced, have both adopted MIMO–OFDM transmission at the physical layer. OFDM signal however suffers from nonlinear distortions when passed through high-power amplifier (HPA) at the RF stage. This nonlinear distortion introduces out-of-band spectral broadening and in-band distortions on the transmitted signals. 4G cellular standards have placed strict limits on the allowable spectral broadening in their spectrum mask specifications, to insure that data transmission on a given channel is not interfering significantly with an adjacent channel user. In this article, we characterize the out-of-band spectral broadening introduced by HPA when MIMO–OFDM signals are transmitted over multiple relaying channels. Expressions for the power spectral density of MIMO–OFDM signals are derived over multiple relay channels, and the cumulative effects of HPA on the spectrum of the transmitted signals are estimated. It is shown that depending on the number of relays and the relaying configuration employed, it may happen that a transmitted MIMO–OFDM signal with the transmit spectrum mask initially within the allowable set limit at the source node arrives at the destination violating this limit due to the cumulative effects of the multiple HPA’s in a multihop relaying channel.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Reference32 articles.
1. Wang S-H, Li C-P: A low-complexity PAPR reduction scheme for SFBC MIMO-OFDM systems. IEEE Signal Process. Lett. 2009, 16(11):941-944.
2. Wang Y, Chen W, Tellembura C: A PARP reduction method based on artificial bee colony algorithm for OFDM signals. IEEE Trans. Wirel. Commun. 2010., 9(10):
3. Costa E, Pupolin S: M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise. IEEE Trans. Commun. 2002, 50(3):462-472. 10.1109/26.990908
4. Sulyman AI, Ibnkahla M: Performance analysis of nonlinearly amplified M-QAM signals in MIMO channels. Eur. Trans. Telecommun. 2008, 19(1):15-22. 10.1002/ett.1221
5. Riihonen T, Werner S, Gregorio F, Wichman R, Hamalainen J: BEP analysis of OFDM relay links with nonlinear power amplifiers. Proceedings of the 2010 IEEE Wireless Communications and Networking Conference (WCNC), Sydney, Australia 2010, 6.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献