A multi-layered OFDM system with parallel transmission for multicell cooperative cellular networks

Author:

Yang Jiaxin,Wang Xianbin,Park Sung Ik,Kim Heung Mook

Abstract

Abstract Recent development in multicell cooperation poses significant technical challenges to the design of robust and flexible transmission techniques. A new multi-layered orthogonal frequency-division multiplexing (ML-OFDM) system is proposed in this article to provide a dynamic platform for multicell cooperation with efficient base station coordination capability. The proposed enhanced layers (ELs), which are overlaid with the cellular communication data (the base layer) in both frequency and time domains, can be used for several specific purposes indispensable to multicell cooperation. It provides an efficient way of sharing the necessary information, e.g., channel state information, user data and other transmission parameters, between the collaborative BSs without the requirement of additional signaling or control channels. Overall network efficiency is substantially enhanced due to the reduction of radio resource overhead. Furthermore, cross BS synchronization and multimedia broadcast multicast service for next generation cellular networks can be simultaneously achieved by the proposed parallel orthogonal ELs. The transceiver design for the ML-OFDM system, particularly the modulation/demodulation of the ELs and EL-induced interference cancelation is presented. Overall system performance is further optimized by proposing a power distribution scheme with a set of practical constraints. The performance of the ML-OFDM system is analyzed and verified through numerical simulations.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Integrated Unit to User's Equipment for the Spectral and Energy Efficiency in Cognitive Networks;International Journal of Interdisciplinary Telecommunications and Networking;2018-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3