Author:
Madi Ghadir,Sacuto Fabien,Vrigneau Baptiste,Agba Basile L.,Pousset Yannis,Vauzelle Rodolphe,Gagnon François
Abstract
Abstract
To satisfy the smart grid electrical network, communication systems in high-voltage substations have to be installed in order to control equipments. Considering that those substations were not necessarily designed for adding communication networks, one of the most appropriate solutions is to use wireless sensor network (WSN). However, the high voltage transported through the station generates a strong and specific radio noise. In order to prepare for such a network, the electromagnetic environment has to be characterized and tests in laboratories have to be performed to estimate the communication performances. This paper presents a method for measuring the noise due to high voltage and more particularly the impulsive noise. In the laboratory, we generate the impulsive noise using two specimens, and we show that these laboratory measurements validate the field measurements of Pakala et al. For the two specimens, it aims to link the noise characteristics (magnitude and frequency) with the specimen parameters (power supply and geometric dimensions) to predict the environments where wireless communications can be troublesome. By using different sets of this measured noise, we show that the statistical model of Middleton Class A can be used to model the impulsive noise in high-voltage substations better than the Gaussian model. We consider a cooperative multiple-input-multiple-output (MIMO) system to achieve the wireless sensor communication. This system uses recent MIMO techniques based on precoding like max-d
min and P-OSM precoders. The MIMO precoder-based cooperative system is a potential candidate for energy saving in WSN since energy efficiency optimization is a very important critical issue. Since MIMO precoders are with Gaussian noise assumption, we evaluate the performance of several MIMO precoders in the presence of impulsive noise using estimated parameters from the measured noise.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Reference29 articles.
1. Arnold GW: Challenges and opportunities in smart grid: a position article. Proc IEEE 2011, 99(6):922-927.
2. Pakala W, Chartier V: Radio noise measurements on overhead power lines from 2,4 to 800 kv. IEEE Trans Power Appl Syst 1971, PAS-90: 1155-1165.
3. Pakala W, Taylor E, Harrold R: Radio noise measurements on high voltage lines from 2.4 to 345 kv. IEEE Trans Electromagn Compat 1968, 10: 96-107.
4. Spaulding A, Middleton D: Optimum reception in an impulsive interference environment-part 1: coherent detection. IEEE Trans Commun 1977, (9):910-923.
5. Middleton D: Non-gaussian noise models in signal processing for telecommunications: new methods and results for class A and class B noise models. IEEE Trans Inf Theory 1999, 45(4):1129-1149. 10.1109/18.761256
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献