Author:
Rami-Mark Christina,Berroterán-Infante Neydher,Philippe Cecile,Foltin Stefanie,Vraka Chrysoula,Hoepping Alexander,Lanzenberger Rupert,Hacker Marcus,Mitterhauser Markus,Wadsak Wolfgang
Abstract
Abstract
Background
The norepinephrine transporter (NET) has been demonstrated to be relevant to a multitude of neurological, psychiatric and cardiovascular pathologies. Due to the wide range of possible applications for PET imaging of the NET together with the limitations of currently available radioligands, novel PET tracers for imaging of the cerebral NET with improved pharmacological and pharmacodynamic properties are needed.
Methods
The present study addresses the radiosynthesis and first preclinical evaluation of the novel NET PET tracer [11C]Me@HAPTHI by describing its affinity, selectivity, metabolic stability, plasma free fraction, blood–brain barrier (BBB) penetration and binding behaviour in in vitro autoradiography.
Results
[11C]Me@HAPTHI was prepared and displayed outstanding affinity and selectivity as well as excellent in vitro metabolic stability, and it is likely to penetrate the BBB. Moreover, selective NET binding in in vitro autoradiography was observed in human brain and rat heart tissue samples.
Conclusions
All preclinical results and radiosynthetic key-parameters indicate that the novel benzothiadiazole dioxide-based PET tracer [11C]Me@HAPTHI is a feasible and improved NET radioligand and might prospectively facilitate clinical NET imaging.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献