Biodistribution and imaging of an hsp90 ligand labelled with 111In and 67Ga for imaging of cell death

Author:

Ho Shon IvanORCID,Kumar Divesh,Sathiakumar Chithradevi,Berghofer Paula,Van Khang,Chicco Andrew,Hogg Philip J.

Abstract

Abstract Background 4-(N-(S-glutathionylacetyl)amino) phenylarsonous acid (GSAO) when conjugated at the γ-glutamyl residue with fluorophores and radio-isotopes is able to image dead and dying cells in vitro and in vivo by binding to intracellular 90-kDa heat shock proteins (hsp90) when cell membrane integrity is compromised. The ability to image cell death has potential clinical impact especially for early treatment response assessment in oncology. This work aims to assess the biodistribution and tumour uptake of diethylene triamine pentaacetic acid GSAO labelled with 111In ([111In]In-DTPA-GSAO) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid GSAO labelled with 67Ga ([67Ga]Ga-DOTA-GSAO) in a murine subcutaneous tumour xenograft model and estimate dosimetry of [67Ga]Ga-DOTA-GSAO. Results There was good tumour uptake of both [111In]In-DTPA-GSAO and [67Ga]Ga-DOTA-GSAO (2.44 ± 0.26% injected activity per gramme of tissue (%IA/g) and 2.75 ± 0.34 %IA/g, respectively) in Balb c nu/nu mice bearing subcutaneous tumour xenografts of a human metastatic prostate cancer cell line (PC3M-luc-c6). Peak tumour uptake occurred at 2.7 h post injection. [111In]In-DTPA-GSAO and [67Ga]Ga-DOTA-GSAO demonstrated increased uptake in the liver (4.40 ± 0.86 %IA/g and 1.72 ± 0.27 %IA/g, respectively), kidneys (16.54 ± 3.86 %IA/g and 8.16 ± 1.33 %IA/g) and spleen (6.44 ± 1.24 %IA/g and 1.85 ± 0.44 %IA/g); however, uptake in these organs was significantly lower with [67Ga]Ga-DOTA-GSAO (p = 0.006, p = 0.017 and p = 0.003, respectively). Uptake of [67Ga]Ga-DOTA-GSAO into tumour was higher than all organs except the kidneys. There was negligible uptake in the other organs. Excretion of [67Ga]Ga-DOTA-GSAO was more rapid than [111In]In-DTPA-GSAO. Estimated effective dose of [67Ga]Ga-DOTA-GSAO for an adult male human was 1.54 × 10− 2 mSv/MBq. Conclusions [67Ga]Ga-DOTA-GSAO demonstrates higher specific uptake in dead and dying cells within tumours and lower uptake in normal organs than [111In]In-DTPA-GSAO. [67Ga]Ga-DOTA-GSAO may be potentially useful for imaging cell death in vivo. Dosimetry estimates for [67Ga]Ga-DOTA-GSAO are acceptable for future human studies. This work also prepares for development of 68Ga GSAO radiopharmaceuticals.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3