Abstract
Abstract
Background
The role of 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) in children is still expanding. Dedicated paediatric dosage regimens are needed to keep the radiation dose as low as reasonably achievable and reduce the risk of radiation-induced carcinogenesis. The aim of this study is to investigate the relation between patient-dependent parameters and [18F]FDG PET image quality in order to propose a dedicated paediatric dose regimen.
Methods
In this retrospective analysis, 102 children and 85 adults were included that underwent a diagnostic [18F]FDG PET/CT scan. The image quality of the PET scans was measured by the signal-to-noise ratio (SNR) in the liver. The SNR liver was normalized (SNRnorm) for administered activity and acquisition time to apply curve fitting with body weight, body length, body mass index, body weight/body length and body surface area. Curve fitting was performed with two power fits, a nonlinear two-parameter model α p−d and a linear single-parameter model α p−0.5. The fit parameters of the preferred model were combined with a user preferred SNR to obtain at least moderate or good image quality for the dosage regimen proposal.
Results
Body weight demonstrated the highest coefficient of determination for the nonlinear (R2 = 0.81) and linear (R2 = 0.80) models. The nonlinear model was preferred by the Akaike’s corrected information criterion. We decided to use a SNR of 6.5, based on the expert opinion of three nuclear medicine physicians. Comparison with the quadratic adult protocol confirmed the need for different dosage regimens for both patient groups. In this study, the amount of administered activity can be considerably reduced in comparison with the current paediatric guidelines.
Conclusion
Body weight has the strongest relation with [18F]FDG PET image quality in children. The proposed nonlinear dosage regimen based on body mass will provide a constant and clinical sufficient image quality with a significant reduction of the effective dose compared to the current guidelines. A dedicated paediatric dosage regimen is necessary, as a universal dosing regimen for paediatric and adult is not feasible.
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging
Reference54 articles.
1. Masselli G, De Angelis C, Sollaku S, Casciani E, Gualdi G. PET/CT in pediatric oncology. Am J Nucl Med Mol Imaging. 2020;10(2):83.
2. Parisi MT, Otjen JP, Stanescu AL, Shulkin BL. Radionuclide imaging of infection and inflammation in children: a review. Semin Nucl Med. 2018;48(2):148–65.
3. Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, et al. Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat Res. 2012;177(3):229–43.
4. ICRP. The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Ann ICRP. 2007;37(2–4): 2
5. WHO. Communicating radiation risks in Paediatric imaging. Geneva: WHO Press; 2016.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献