Author:
Huisman Marc C.,Menke-van der Houven van Oordt C. Willemien,Zijlstra Josée M.,Hoekstra Otto S.,Boellaard Ronald,van Dongen Guus A. M. S.,Shah Dhaval K.,Jauw Yvonne W. S.
Abstract
Abstract
Background
89Zirconium-immuno-positron emission tomography (89Zr-immuno-PET) is used for assessment of target status to guide antibody-based therapy. We aim to determine the relation between antibody tumor uptake and target concentration to improve future study design and interpretation.
Methods
The relation between tumor uptake and target concentration was predicted by mathematical modeling of 89Zr-labeled antibody disposition in the tumor. Literature values for trastuzumab kinetics were used to provide an example.
Results
89Zr-trastuzumab uptake initially increases with increasing target concentration, until it levels off to a constant value. This is determined by the total administered mass dose of trastuzumab. For a commonly used imaging dose of 50 mg 89Zr-trastuzumab, uptake can discriminate between immunohistochemistry score (IHC) 0 versus 1–2–3.
Conclusion
The example for 89Zr-trastuzumab illustrates the potential to assess target expression. The pitfall of false-positive findings depends on the cut-off to define clinical target positivity (i.e., IHC 3) and the administered mass dose.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Reference16 articles.
1. Ulaner GA, Hyman DM, Lyashchenko SK, Lewis JS, Carrasquillo JA. 89Zr-trastuzumab PET/CT for detection of human epidermal growth factor receptor 2-positive metastases in patients with human epidermal growth factor receptor 2-negative primary breast cancer. Clin Nucl Med. 2017;42(12):912–7.
2. Urva SR, Yang VC, Balthasar JP. Physiologically based pharmacokinetic model for T84.66: a monoclonal anti-CEA antibody. J Pharm Sci. 2010;99(3):1582–600.
3. Shih LB, Thorpe SR, Griffiths GL, Diril H, Ong GL, Hansen HJ, et al. The processing and fate of antibodies and their radiolabels bound to the surface of tumor cells in vitro: a comparison of nine radiolabels. J Nucl Med. 1994;35(5):899–908.
4. O’Donoghue JA, Lewis JS, Pandit-Taskar N, Fleming SE, Schöder H, Larson SM, et al. Pharmacokinetics, biodistribution, and radiation dosimetry for 89Zr-trastuzumab in patients with esophagogastric cancer. J Nucl Med. 2018;59(1):161–6.
5. Hull CJ. Pharmacokinetics and pharmacodynamics. Br J Anaesth. 1979;51(7):579–94.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献