Abstract
Abstract
Background
Receptor saturation during peptide receptor radionuclide therapy (PRRT) could result in altered [177Lu]Lu-HA-DOTATATE uptake in tumors and organs. Therefore, receptor expression status and effects of different (unlabeled) administered peptide amounts during PRRT need to be evaluated. The aim of this study was to assess potential receptor saturation during PRRT by comparing organ and tumor uptake after administration of [177Lu]Lu-HA-DOTATATE with low, standard and high administered peptide amounts in patients with advanced metastatic neuroendocrine tumors (NETs).
Methods
Data of NET patients that received 7.4 GBq 177-Lutetium labeled to a low or high amount of HA-DOTATATE were retrospectively included. From included patients other PRRT cycles, containing standard administered peptide amounts, were included for intra-patient comparison. Uptake quantification was performed for spleen, liver, kidney, bone marrow, blood pool and tumor lesions on post-treatment SPECT/CT scans. A paired Wilcoxon signed-rank test was performed to determine uptake differences between two adjacent cycles for each patient.
Results
Thirteen patients received [177Lu]Lu-HA-DOTATATE with a high administered peptide amount (mean 346 µg vs 178 µg standard peptide amount). Low peptide amounts were administered to fifteen patients (mean 109 µg vs 202 µg standard peptide amount). High administered peptide amount resulted in significantly lower [177Lu]Lu-HA-DOTATATE uptake in the spleen (p = 0.00012), kidney (p = 0.013) and tumor lesions (p < 0.0001) versus standard peptide amounts. For low administered peptide amount, uptake was increased in the spleen (p = 0.015), while tumor uptake was significantly reduced (p = 0.015) compared to uptake after administration of standard peptide amounts.
Conclusions
These findings confirmed a peptide amount-dependent organ and tumor accumulation for [177Lu]Lu-HA-DOTATATE, with receptor saturation in spleen for high and standard peptide amounts, while tumor and kidney receptor saturation occur only with high administered peptide amounts. A high peptide amount (~ 350 µg) is not recommended for standard-dose PRRT and standard amounts (~ 200 µg) seem more suitable to achieve optimal tumor accumulation with limited organ uptake.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Reference19 articles.
1. Barnett P. Somatostatin and somatostatin receptor physiology. Endocrine. 2003;20:255–64. https://doi.org/10.1385/endo:20:3:255.
2. Pauwels E, Cleeren F, Bormans G, Deroose CM. Somatostatin receptor PET ligands - the next generation for clinical practice. Am J Nucl Med Mol Imaging. 2018;8:311–31.
3. Kwekkeboom D, Krenning EP, de Jong M. Peptide receptor imaging and therapy. J Nucl Med. 2000;41:1704–13.
4. Hofland LJ, Lamberts SW. The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr Rev. 2003;24:28–47. https://doi.org/10.1210/er.2000-0001.
5. Hofland LJ, Liu Q, van Koetsveld PM, Zuijderwijk J, van der Ham F, de Krijger RR, et al. Immunohistochemical detection of somatostatin receptor subtypes sst1 and sst2A in human somatostatin receptor positive tumors. J Clin Endocrinol Metab. 1999;84:775–80. https://doi.org/10.1210/jcem.84.2.5497.