Human biodistribution and internal dosimetry of 4-[ 18F]fluorobenzyl-dexetimide: a PET radiopharmaceutical for imaging muscarinic acetylcholine receptors in the brain and heart

Author:

Pain Cameron D.ORCID,O’Keefe Graeme J.,Ackermann Uwe,Dore Vincent,Villemagne Victor L.,Rowe Christopher C.

Abstract

Abstract Background 4-[18F] fluorobenzyl dexetimide (F-DEX) is the first non-subtype selective fluorine-18 labelled tracer for muscarinic receptors (mAChR) used in humans. A recent first-in-human study found high regional brain uptake with low variation in normal subjects. Disturbance of mAChR has been reported in Alzheimer’s and Parkinson’s disease, schizophrenia and depression and various cardiac diseases. The following work assesses the biodistribution, organ tracer kinetics and radiation dose associated with F-DEX. Method Dose calculations were based on activity uptake derived from multiple time point whole body PET CT imaging and the organ-specific dosimetric S-factors derived from the ICRP 133 standard man and woman mathematical phantoms. Effective doses were calculated using the latest ICRP tissue weighting factors. Results Serial images and time activity curves demonstrate high brain and left ventricular myocardial uptake (5% and 0.65% of injected activity, respectively) with greater retention in brain than myocardium. The mean effective dose was in concordance with other 18F labelled tracers at 19.70 ± 2.27 μSv/MBq. The largest absorbed doses were in the liver (52.91 ± 1.46 μGy/MBq) and heart wall (43.94 ± 12.88 μGy/MBq) for standard man and the liver (61.66 ± 13.61 μGy/MBq) and lungs (40.93 ± 3.11 μGy/MBq) for standard woman. The absorbed dose to all organs, most notably, the red bone marrow (20.03 ± 2.89 μGy/MBq) was sufficiently low to ensure no toxicity after numerous follow-up procedures. Conclusions The radiation dose associated with an administration of F-DEX is comparable to that of other 18F labelled tracers such as FDG (19.0 μSv/MBq) and lower than tracers used for SPECT imaging of muscarinic receptors (I-DEX 28.5 μSv/MBq). Clinical use would likely result in an effective dose less than 4 mSv for the ICRP 133 standard phantoms after dose optimisation allowing justification for numerous follow-up procedures. Recent results from first in-human studies and a comparatively low radiation dose make F-DEX an attractive option for future applications of imaging muscarinic receptors in the brain. Further investigation of the potential of F-DEX for imaging parasympathetic innervation of the heart may be warranted.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3