Modification of intracellular glutathione status does not change the cardiac trapping of 64Cu(ATSM)

Author:

Shaughnessy Fiona,Mariotti Erika,Shaw Karen P,Eykyn Thomas R,Blower Philip J,Siow Richard,Southworth Richard

Abstract

Abstract Background The trapping mechanisms of the PET hypoxia imaging agent copper(II)-diacetyl-bis(N 4-methylthiosemicarbazone) (64Cu(ATSM)) remain unresolved, although its reduction prior to dissociation may be mediated by intracellular thiols. Glutathione (GSH) is the most abundant intracellular thiol, and its redox status changes in cancer cells and ischaemic myocardium (two prime applications for 64Cu(ATSM) PET). We therefore investigated whether modification of intracellular GSH content affects the hypoxia selectivity of 64Cu(ATSM). Methods Isolated rat hearts (n = five per group) were perfused with aerobic buffer (equilibrated with 95%O2/5%CO2) for 15 min, then hypoxic buffer (95%N2/5%CO2) for 20 min. Cardiac glutathione was depleted by buthionine sulphoximine (BSO, 4 mmol/kg/ 48 h intraperitoneal), or augmented by N-acetyl cysteine (NAC, 4 mmol/L) in the perfusion buffer. Cardiac 64Cu retention from three 2-MBq bolus injections of 64Cu(ATSM) before and during hypoxia was then monitored by NaI detectors. Results Cardiac GSH content was elevated by NAC and depleted by BSO (from 7.9 ± 2.0 to 59.3 ± 8.3 nmol/mg and 3.7 ± 1.0 nmol/mg protein, respectively; p < 0.05). Hypoxia did not affect cardiac GSH content in any group. During normoxia, tracer washed out bi-exponentially, with 13.1% ± 1.7% injected dose being retained; this was not affected by GSH augmentation or depletion. Hypoxia significantly increased tracer retention (to 59.1% ± 6.3%, p < 0.05); this effect was not modified by GSH augmentation or depletion. Conclusion Modification of GSH levels had no impact upon the pharmacokinetics or hypoxia selectivity of 64Cu(ATSM). While thiols may yet prove essential for the intracellular trapping of 64Cu(ATSM), they are not the determinants of its hypoxia selectivity.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging

Reference28 articles.

1. Dearling JL, Lewis JS, Mullen GE, Welch MJ, Blower PJ: Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: structure-activity relationships. J Biol Inorg Chem 2002, 7(3):249–259. 10.1007/s007750100291

2. Lewis JS, McCarthy DW, McCarthy TJ, Fujibayashi Y, Welch MJ: Evaluation of64Cu-ATSM in vitro and in vivo in a hypoxic tumor model. J Nucl Med 1999, 40(1):177–183.

3. Lewis JS, Sharp TL, Laforest R, Fujibayashi Y, Welch MJ: Tumor uptake of copper-diacetyl-bis( N (4)- methylthiosemicarbazone): effect of changes in tissue oxygenation. J Nucl Med 2001, 42(4):655–661.

4. Dearling JL, Blower PJ: Redox-active metal complexes for imaging hypoxic tissues: structure-activity relationships in copper(II) bis(thiosemicarbazone) complexes. Chem Commun 1998, 1998(22):2531–2532. 10.1039/a805957h

5. Lewis JS, Herrero P, Sharp TL, Engelbach JA, Fujibayashi Y, Laforest R, Kovacs A, Gropler RJ, Welch MJ: Delineation of hypoxia in canine myocardium using PET and copper(II)-diacetyl-bis( N (4)-methylthiosemicarbazone). J Nucl Med 2002, 43(11):1557–1569.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3