Author:
van Oosterom Matthias N,Kreuger Rob,Buckle Tessa,Mahn Wendy A,Bunschoten Anton,Josephson Lee,van Leeuwen Fijs WB,Beekman Freek J
Abstract
Abstract
Background
In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a fully integrated bioluminescence-fluorescence-SPECT platform. Next to an optimization in logistics and image fusion, this integration can help improve understanding of the optical imaging (OI) results.
Methods
An OI module was developed for a preclinical SPECT system (U-SPECT, MILabs, Utrecht, the Netherlands). The applicability of the module for bioluminescence and fluorescence imaging was evaluated in both a phantom and in an in vivo setting using mice implanted with a 4 T1-luc + tumor. A combination of a fluorescent dye and radioactive moiety was used to directly relate the optical images of the module to the SPECT findings. Bioluminescence imaging (BLI) was compared to the localization of the fluorescence signal in the tumors.
Results
Both the phantom and in vivo mouse studies showed that superficial fluorescence signals could be imaged accurately. The SPECT and bioluminescence images could be used to place the fluorescence findings in perspective, e.g. by showing tracer accumulation in non-target organs such as the liver and kidneys (SPECT) and giving a semi-quantitative read-out for tumor spread (bioluminescence).
Conclusions
We developed a fully integrated multimodal platform that provides complementary registered imaging of bioluminescent, fluorescent, and SPECT signatures in a single scanning session with a single dose of anesthesia. In our view, integration of these modalities helps to improve data interpretation of optical findings in relation to radionuclide images.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Reference37 articles.
1. Weissleder R, Mahmood U: Molecular imaging. Radiology 2001, 219: 316–333. 10.1148/radiology.219.2.r01ma19316
2. Ramaswamy AK, Hamilton M, Joshi RV, Kline BP, Li R, Wang P, Goergen CJ: Molecular imaging of experimental abdominal aortic aneurysms. Scientific World Journal 2013, 2013: 973150. 10.1155/2013/973150
3. Culver J, Akers W, Achilefu S: Multimodality molecular imaging with combined optical and SPECT/PET modalities. J Nucl Med 2008, 49: 169–172. 10.2967/jnumed.107.043331
4. Deroose CM, De A, Loening AM, Chow PL, Ray P, Chatziioannou AF, Gambhir SS: Multimodality imaging of tumor xenografts and metastases in mice with combined small-animal PET, small-animal CT, and bioluminescence imaging. J Nucl Med 2007, 48: 295–303.
5. Park JM, Gambhir SS: Multimodality radionuclide, fluorescence, and bioluminescence small-animal imaging. Proc IEEE 2005, 93: 771–783. 10.1109/JPROC.2005.844263
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献