Automated procedure assessing the accuracy of HRCT–PET registration applied in functional virtual bronchoscopy

Author:

Opposits GáborORCID,Nagy Marianna,Barta Zoltán,Aranyi Csaba,Szabó Dániel,Makai Attila,Varga Imre,Galuska László,Trón Lajos,Balkay László,Emri Miklós

Abstract

Abstract Background Bronchoscopy serves as direct visualisation of the airway. Virtual bronchoscopy provides similar visual information using a non-invasive imaging procedure(s). Early and accurate image-guided diagnosis requires the possible highest performance, which might be approximated by combining anatomical and functional imaging. This communication describes an advanced functional virtual bronchoscopic (fVB) method based on the registration of PET images to high-resolution diagnostic CT images instead of low-dose CT images of lower resolution obtained from PET/CT scans. PET/CT and diagnostic CT data were collected from 22 oncological patients to develop a computer-aided high-precision fVB. Registration of segmented images was performed using elastix. Results For virtual bronchoscopy, we used an in-house developed segmentation method. The quality of low- and high-dose CT image registrations was characterised by expert’s scoring the spatial distance of manually paired corresponding points and by eight voxel intensity-based (dis)similarity parameters. The distribution of (dis)similarity parameter correlating best with anatomic scoring was bootstrapped, and 95% confidence intervals were calculated separately for acceptable and insufficient registrations. We showed that mutual information (MI) of the eight investigated (dis)similarity parameters displayed the closest correlation with the anatomy-based distance metrics used to characterise the quality of image registrations. The 95% confidence intervals of the bootstrapped MI distribution were [0.15, 0.22] and [0.28, 0.37] for insufficient and acceptable registrations, respectively. In case of any new patient, a calculated MI value of registered low- and high-dose CT image pair within the [0.28, 0.37] or the [0.15, 0.22] interval would suggest acceptance or rejection, respectively, serving as an aid for the radiologist. Conclusion A computer-aided solution was proposed in order to reduce reliance on radiologist’s contribution for the approval of acceptable image registrations.

Funder

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3