Evaluation of [11C]UCB-A positron emission tomography in human brains

Author:

Xiong MengfeiORCID,Lubberink Mark,Appel Lieuwe,Fang Xiaotian Tsong,Danfors Torsten,Kumlien Eva,Antoni Gunnar

Abstract

Abstract Background In preclinical studies, the positron emission tomography (PET) imaging with [11C]UCB-A provided promising results for imaging synaptic vesicle protein 2A (SV2A) as a proxy for synaptic density. This paper reports the first-in-human [11C]UCB-A PET study to characterise its kinetics in healthy subjects and further evaluate SV2A-specific binding. Results Twelve healthy subjects underwent 90-min baseline [11C]UCB-A scans with PET/MRI, with two subjects participating in an additional blocking scan with the same scanning procedure after a single dose of levetiracetam (1500 mg). Our results indicated abundant [11C]UCB-A brain uptake across all cortical regions, with slow elimination. Kinetic modelling of [11C]UCB-A PET using various compartment models suggested that the irreversible two-tissue compartment model best describes the kinetics of the radioactive tracer. Accordingly, the Patlak graphical analysis was used to simplify the analysis. The estimated SV2A occupancy determined by the Lassen plot was around 66%. Significant specific binding at baseline and comparable binding reduction as grey matter precludes the use of centrum semiovale as reference tissue. Conclusions [11C]UCB-A PET imaging enables quantifying SV2A in vivo. However, its slow kinetics require a long scan duration, which is impractical with the short half-life of carbon-11. Consequently, the slow kinetics and complicated quantification methods may restrict its use in humans.

Funder

Uppsala Universitet

Uppsala University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3