A new 68Ga-labeled somatostatin analog containing two iodo-amino acids for dual somatostatin receptor subtype 2 and 5 targeting

Author:

Mansi Rosalba,Abid Karim,Nicolas Guillaume P.,Del Pozzo Luigi,Grouzmann Eric,Fani MelpomeniORCID

Abstract

Abstract Background Somatostatin receptor (SST) targeting, specifically of the subtype 2 (SST2), with radiolabeled somatostatin analogs, is established for imaging and treatment of neuroendocrine tumors. Owing to the concomitant and heterogeneous expression of several subtypes on the same tumor, analogs targeting more subtypes than SST2 potentially target a broader spectrum of tumors and/or increase the uptake of a given tumor. The analog ST8950 ((4-amino-3-iodo)-d-Phe-c[Cys-(3-iodo)-Tyr-d-Trp-Lys-Val-Cys]-Thr-NH2), bearing 2 iodo-amino acids, exhibits sub-nanomolar affinity to SST2 and SST5. We report herein the development and preclinical evaluation of DOTA-ST8950 labeled with 68Ga, for imaging SST2- and SST5-expressing tumors. Comparative in vitro and in vivo studies were performed with the de-iodinated DOTA-ST8951 ((4-amino)-d-Phe-c[Cys-Tyr-d-Trp-Lys-Val-Cys]-Thr-NH2) and with the reference compounds DOTA-TATE (SST2 selective) and DOTA-NOC (for SST2 and SST5). Results Compared with natGa-DOTA-NOC, natGa-DOTA-ST8950 exhibited higher affinity to SST2 and SST5 (IC50 (95%CI), nM = 0.32 (0.20–0.50) and 1.9 (1.1–3.1) vs 0.70 (0.50-0.96) and 3.4 (1.8-6.2), respectively), while natGa-DOTA-ST8951 lost affinity for both subtypes. natGa-DOTA-ST8950 had the same potency for inducing SST2-mediated cAMP accumulation as natGa-DOTA-TATE and slightly better than natGa-DOTA-NOC (EC50, nM = 0.46 (0.23–0.92) vs 0.47 (0.15–1.5) vs 0.59 (0.18–1.9), respectively). [67Ga]Ga-DOTA-ST8950 had a similar internalization rate as [67Ga]Ga-DOTA-NOC in SST2-expressing cells (12.4 ± 1.6% vs 16.6 ± 2.2%, at 4 h, p = 0.0586). In vivo, [68Ga]Ga-DOTA-ST8950 showed high and specific accumulation in SST2- and SST5-expressing tumors, comparable with [68Ga]Ga-DOTA-NOC (26 ± 8 vs 30 ± 8 %IA/g, p = 0.4630 for SST2 and 15 ± 6 vs 12 ± 5 %IA/g, p = 0.3282, for SST5, 1 h p.i.) and accumulation in the SST-positive tissues, the kidneys and the liver. PET/CT images of [68Ga]Ga-DOTA-ST8950, performed in a dual HEK-SST2 and HEK-SST5 tumor xenografted model, clearly visualized both tumors and illustrated high tumor-to-background contrast. Conclusions [68Ga]Ga-DOTA-ST8950 reveals its potential for PET imaging SST2- and SST5-expressing tumors. It compares favorably with the clinically used [68Ga]Ga-DOTA-NOC in terms of tumor uptake; however, its uptake in the liver remains a challenge for clinical translation. In addition, this study reveals the essential role of the iodo-substitutions in positions 1 and 3 of [68Ga]Ga-DOTA-ST8950 for maintaining affinity to SST2 and SST5, as the de-iodinated [68Ga]Ga-DOTA-ST8951 lost affinity for both receptor subtypes.

Funder

Kommission für Technologie und Innovation

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3