The potential application of MR-derived ADCmin values from 68Ga-DOTATATE and 18F-FDG dual tracer PET/MR as replacements for FDG PET in assessment of grade and stage of pancreatic neuroendocrine tumors

Author:

Gao Jing,Xu Si,Ju Huijun,Pan Yu,Zhang YifanORCID

Abstract

Abstract Background To evaluate the utility of 68Ga-DOTATATE and 18F-FDG PET/MR for prediction of grade and stage of pancreatic neuroendocrine tumors (PNETs), and to examine the correlation between parameters obtained from FDG PET and diffusion-weighted imaging (DWI) MR parameters. Methods A retrospective study using 68Ga-DOTATATE and 18F-FDG PET/MR imaging was performed between April 2020 and May 2022 on 46 individuals with histologically confirmed PNETs. Metabolic tumor volume (MTV), maximum standardized uptake value (FSUVmax), and tumor lesion glycolysis (TLG) for FDG; somatostatin receptor density (SRD), maximum standardized uptake value (GSUVmax), and total lesion somatostatin receptor density (TLSRD) for DOTATATE; and minimum and mean apparent diffusion coefficient (ADCmin and ADCmean) values for MRI, respectively. We performed Spearman’s correlation analysis to examine the links between these variables and primary tumor stage and grading. Results Higher PNET grading was associated with higher FSUVmax, MTV, and TLG values (P < 0.05). TLG, SRD, ADCmin, and ADCmean values were correlated with N staging, while SRD, MTV, ADCmin, TLG, and ADCmean were associated with M staging. Notably, ADCmin was a negative correlation between FSUVmax (r =  − 0.52; P < 0.001), MTV (r =  − 0.50; P < 0.001), and TLG (r =  − 0.56; P < 0.001). Conclusions This study highlights significant correlative relationships between FDG PET-derived parameters and ADCmin. ADCmin may offer utility as a tool for PNET staging and grading in lieu of FDG PET. 68Ga-DOTATATE PET/MR alone may be a sufficient alternative to dual tracer PET/MR when conducting grading and staging of primary PNETs.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3