Comparison of absorbed dose extrapolation methods for mouse-to-human translation of radiolabelled macromolecules

Author:

Cicone FrancescoORCID,Viertl DavidORCID,Denoël ThibautORCID,Stabin Michael G.ORCID,Prior John O.ORCID,Gnesin SilvanoORCID

Abstract

Abstract Background Extrapolation of human absorbed doses (ADs) from biodistribution experiments on laboratory animals is used to predict the efficacy and toxicity profiles of new radiopharmaceuticals. Comparative studies between available animal-to-human dosimetry extrapolation methods are missing. We compared five computational methods for mice-to-human AD extrapolations, using two different radiopharmaceuticals, namely [111In]CHX-DTPA-scFv78-Fc and [68Ga]NODAGA-RGDyK. Human organ-specific time-integrated activity coefficients (TIACs) were derived from biodistribution studies previously conducted in our centre. The five computational methods adopted are based on simple direct application of mice TIACs to human organs (M1), relative mass scaling (M2), metabolic time scaling (M3), combined mass and time scaling (M4), and organ-specific allometric scaling (M5), respectively. For [68Ga]NODAGA-RGDyK, these methods for mice-to-human extrapolations were tested against the ADs obtained on patients, previously published by our group. Lastly, an average [68Ga]NODAGA-RGDyK-specific allometric parameter αnew was calculated from the organ-specific biological half-lives in mouse and humans and retrospectively applied to M3 and M4 to assess differences in human AD predictions with the α = 0.25 recommended by previous studies. Results For both radiopharmaceuticals, the five extrapolation methods showed significantly different AD results (p < 0.0001). In general, organ ADs obtained with M3 were higher than those obtained with the other methods. For [68Ga]NODAGA-RGDyK, no significant differences were found between ADs calculated with M3 and those obtained directly on human subjects (H) (p = 0.99; average M3/H AD ratio = 1.03). All other methods for dose extrapolations resulted in ADs significantly different from those calculated directly on humans (all p ≤ 0.0001). Organ-specific allometric parameters calculated using combined experimental [68Ga]NODAGA-RGDyK mice and human biodistribution data varied significantly. ADs calculated with M3 and M4 after the application of αnew = 0.17 were significantly different from those obtained by the application of α = 0.25 (both p < 0.001). Conclusions Available methods for mouse-to-human dosimetry extrapolations provided significantly different results in two different experimental models. For [68Ga]NODAGA-RGDyK, the best approximation of human dosimetry was shown by M3, applying a metabolic scaling to the mouse organ TIACs. The accuracy of more refined extrapolation algorithms adopting model-specific metabolic scaling parameters should be further investigated.

Funder

Horizon 2020

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Reference45 articles.

1. Kolenc Peitl P, Rangger C, Garnuszek P, Mikolajczak R, Hubalewska-Dydejczyk A, Maina T, Erba P, Decristoforo C. Clinical translation of theranostic radiopharmaceuticals: current regulatory status and recent examples. J Labelled Comp Radiopharm. 2019;62:673–83.

2. Konijnenberg MW, Bijster M, Krenning EP, De Jong M. A stylized computational model of the rat for organ dosimetry in support of preclinical evaluations of peptide receptor radionuclide therapy with 90Y, 111In, or 177Lu. J Nucl Med. 2004;45:1260–9.

3. Hindorf C, Ljungberg M, Strand SE. Evaluation of parameters influencing S values in mouse dosimetry. J Nucl Med. 2004;45:1960–5.

4. Segars WP, Tsui BM, Frey EC, Johnson GA, Berr SS. Development of a 4-Ddigital mouse phantom for molecular imaging research. Mol Imaging Biol. 2004;6:149–59.

5. Keenan MA, Stabin MG, Segars WP, Fernald MJ. RADAR realistic animal model series for dose assessment. J Nucl Med. 2010;51:471–6.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3