Spinal cord hypermetabolism extends to skeletal muscle in amyotrophic lateral sclerosis: a computational approach to [18F]-fluorodeoxyglucose PET/CT images

Author:

Bauckneht MatteoORCID,Lai Rita,Miceli Alberto,Schenone Daniela,Cossu Vanessa,Donegani Maria Isabella,Raffa Stefano,Borra Anna,Marra Stefano,Campi Cristina,Orengo Annamaria,Massone Anna Maria,Tagliafico Alberto,Caponnetto Claudia,Cabona Corrado,Cistaro Angelina,Chiò Adriano,Morbelli Silvia,Nobili Flavio,Sambuceti Gianmario,Piana Michele,Marini Cecilia

Abstract

Abstract Purpose Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease leading to neuromuscular palsy and death. We propose a computational approach to [18F]-fluorodeoxyglucose (FDG) PET/CT images to analyze the structure and metabolic pattern of skeletal muscle in ALS and its relationship with disease aggressiveness. Materials and methods A computational 3D method was used to extract whole psoas muscle’s volumes and average attenuation coefficient (AAC) from CT images obtained by FDG PET/CT performed in 62 ALS patients and healthy controls. Psoas average standardized uptake value (normalized on the liver, N-SUV) and its distribution heterogeneity (defined as N-SUV variation coefficient, VC-SUV) were also extracted. Spinal cord and brain motor cortex FDG uptake were also estimated. Results As previously described, FDG uptake was significantly higher in the spinal cord and lower in the brain motor cortex, in ALS compared to controls. While psoas AAC was similar in patients and controls, in ALS a significant reduction in psoas volume (3.6 ± 1.02 vs 4.12 ± 1.33 mL/kg; p < 0.01) and increase in psoas N-SUV (0.45 ± 0.19 vs 0.29 ± 0.09; p < 0.001) were observed. Higher heterogeneity of psoas FDG uptake was also documented in ALS (VC-SUV 8 ± 4%, vs 5 ± 2%, respectively, p < 0.001) and significantly predicted overall survival at Kaplan–Meier analysis. VC-SUV prognostic power was confirmed by univariate analysis, while the multivariate Cox regression model identified the spinal cord metabolic activation as the only independent prognostic biomarker. Conclusion The present data suggest the existence of a common mechanism contributing to disease progression through the metabolic impairment of both second motor neuron and its effector.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3