Comparison of [18F] NaF PET/CT dynamic analysis methods and a static analysis method including derivation of a semi-population input function for site-specific measurements of bone formation in a population with chronic kidney disease-mineral and bone disorder

Author:

Vrist M. H.ORCID,Bech J. N.ORCID,Lauridsen T. G.,Fynbo C. A.ORCID,Theil J.ORCID

Abstract

Abstract Purpose The purpose of this study is to compare dynamic and static whole-body (WB) [18F]NaF PET/CT scan methods used for analysis of bone plasma clearance in patients with chronic kidney disease-mineral and bone disorder (CKD-MBD). Methods Seventeen patients with CKD-MBD underwent a 60-min dynamic scan followed by a 30-min static WB scan. Tracer kinetics in four thoracic vertebrae were analysed using nonlinear regression and Patlak analysis using image-derived arterial input functions. The static WB scan was analysed using a simplified Patlak method requiring only a single data point in combination with a fixed y-intercept value (V0), both obtained using a semi-population function. The semi-population function was constructed by combining a previously derived population input function in combination with data from venous blood samples. Static WB scan analysis data, obtained from the semi-population input functions, was compared with paired data obtained using dynamic input functions. Results Bone plasma clearance (Ki) from Patlak analyses correlated well with nonlinear regression analysis, but Ki results using Patlak analysis were lower than Ki results using nonlinear regression analysis. However, no significant difference was found between Ki obtained by static WB scans and Ki obtained by dynamic scans using nonlinear regression analysis (p = 0.29). Conclusion Bone plasma clearance measured from static WB scans correlates with clearance data measured by dynamic analysis. Static [18F]NaF PET/CT scans can be applied in future studies to measure Ki in patients with CKD-MBD, but the results should not be compared uncritically with results obtained by dynamic scan analysis.

Funder

dansk nefrologisk selskab

axel muusfeldts fond

region midtjylland

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging

Reference25 articles.

1. Blau M, Nagler W, Bender MA. Fluorine-18: a new isotope for bone scanning. J Nucl Med Off Publ Soc Nucl Med. 1962;3:332–4.

2. Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int. 2006;69(11):1945–53.

3. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2017;7(1):1–59.

4. Lucas RC. On a form of late rickets associated with albuminuria, rickets of adolecents. Lancet. 1883;1:993–4.

5. Messa C, Goodman WG, Hoh CK, Choi Y, Nissenson AR, Salusky IB, et al. Bone metabolic activity measured with positron emission tomography and [18F]fluoride ion in renal osteodystrophy: correlation with bone histomorphometry. J Clin Endocrinol Metab. 1993;77(4):949–55.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3