Abstract
Abstract
Background
Low-grade neuroendocrine tumors (NETs) are characterized by an abundance of somatostatin receptors (SSTR) that can be targeted with somatostatin analogs (SSA). When activated with a single dose of SSA, the receptor-ligand complex is internalized, and the receptor is by default recycled within 24 h. Ongoing medication with long-acting SSAs at 68Ga-DOTA-SSA-PET has been shown to increase the tumor-to-normal organ contrast. This study was performed to investigate the time-dependent extended effect (7 h) of a single intravenous dose of 400 µg short-acting octreotide on the tumor versus normal tissue uptake of 68Ga-DOTATOC.
Methods
Patients with small-intestinal NETs received a single intravenous dose of 400 µg octreotide and underwent dynamic abdominal 68Ga-DOTATOC-PET/CT at three sessions (0, 3 and 6 h) plus static whole-body (WB) PET/CT (1, 4 and 7 h), starting each PET/CT session by administering 167 ± 21 MBq, 23.5 ± 4.2 µg (mean ± SD, n = 12) of 68Ga-DOTATOC. A previously acquired clinical whole-body 68Ga-DOTATOC scan was used as baseline. SUV and net uptake rate Ki were calculated in tumors, and SUV in healthy organs.
Results
Tumor SUV decreased significantly from baseline to 1 h post-injection but subsequently increased over time and became similar to baseline at 4 h and 7 h. The tumor net uptake rate, Ki, similarly increased significantly over time and showed a linear correlation both with SUV and tumor-to-blood ratio. By contrast, the uptake in liver, spleen and pancreas remained significantly below baseline levels also at 7 h and the receptor turn-over in tumors thus exceeded that in the normal tissue, with restitution of tumor 68Ga-DOTATOC uptake mainly completed at 7 h. These results however differed depending on tumor size, with significant increases in Ki and SUV between the 1st and 2nd PET, in large tumors (≥ 4 mL) but not in small (> 1 to < 4 mL) tumors.
Conclusion
SSTR recycling is faster in small-intestinal NETs than in liver, spleen and pancreas. This opens the possibility to protect normal tissues during PRRT by administering a single dose of cold peptide hours before peptide receptor radionuclide therapy (PRRT), and most likely additionally improve the availability and uptake of the therapeutic preparation in the tumors.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Reference36 articles.
1. Rindi G, Klimstra DS, Abedi-Ardekani B, Asa SL, Bosman FT, Brambilla E, et al. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod Pathol. 2018;31(12):1770–86.
2. Reubi JC, Maurer R, von Werder K, Torhorst J, Klijn JG, Lamberts SW. Somatostatin receptors in human endocrine tumors. Cancer Res. 1987;47(2):551–8.
3. Hoyer D, Lubbert H, Bruns C. Molecular pharmacology of somatostatin receptors. Naunyn Schmiedebergs Arch Pharmacol. 1994;350(5):441–53.
4. Modlin IM, Oberg K, Chung DC, Jensen RT, de Herder WW, Thakker RV, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9(1):61–72.
5. Reubi JC, Schaer JC, Waser B, Mengod G. Expression and localization of somatostatin receptor SSTR1, SSTR2, and SSTR3 messenger RNAs in primary human tumors using in situ hybridization. Cancer Res. 1994;54(13):3455–9.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献