Receptor depletion and recovery in small-intestinal neuroendocrine tumors and normal tissues after administration of a single intravenous dose of octreotide measured by 68Ga-DOTATOC PET/CT

Author:

Jahn UlrikaORCID,Ilan Ezgi,Velikyan Irina,Fröss-Baron Katarzyna,Lubberink Mark,Sundin Anders

Abstract

Abstract Background Low-grade neuroendocrine tumors (NETs) are characterized by an abundance of somatostatin receptors (SSTR) that can be targeted with somatostatin analogs (SSA). When activated with a single dose of SSA, the receptor-ligand complex is internalized, and the receptor is by default recycled within 24 h. Ongoing medication with long-acting SSAs at 68Ga-DOTA-SSA-PET has been shown to increase the tumor-to-normal organ contrast. This study was performed to investigate the time-dependent extended effect (7 h) of a single intravenous dose of 400 µg short-acting octreotide on the tumor versus normal tissue uptake of 68Ga-DOTATOC. Methods Patients with small-intestinal NETs received a single intravenous dose of 400 µg octreotide and underwent dynamic abdominal 68Ga-DOTATOC-PET/CT at three sessions (0, 3 and 6 h) plus static whole-body (WB) PET/CT (1, 4 and 7 h), starting each PET/CT session by administering 167 ± 21 MBq, 23.5 ± 4.2 µg (mean ± SD, n = 12) of 68Ga-DOTATOC. A previously acquired clinical whole-body 68Ga-DOTATOC scan was used as baseline. SUV and net uptake rate Ki were calculated in tumors, and SUV in healthy organs. Results Tumor SUV decreased significantly from baseline to 1 h post-injection but subsequently increased over time and became similar to baseline at 4 h and 7 h. The tumor net uptake rate, Ki, similarly increased significantly over time and showed a linear correlation both with SUV and tumor-to-blood ratio. By contrast, the uptake in liver, spleen and pancreas remained significantly below baseline levels also at 7 h and the receptor turn-over in tumors thus exceeded that in the normal tissue, with restitution of tumor 68Ga-DOTATOC uptake mainly completed at 7 h. These results however differed depending on tumor size, with significant increases in Ki and SUV between the 1st and 2nd PET, in large tumors (≥ 4 mL) but not in small (> 1 to  < 4 mL) tumors. Conclusion SSTR recycling is faster in small-intestinal NETs than in liver, spleen and pancreas. This opens the possibility to protect normal tissues during PRRT by administering a single dose of cold peptide hours before peptide receptor radionuclide therapy (PRRT), and most likely additionally improve the availability and uptake of the therapeutic preparation in the tumors.

Funder

Uppsala University

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3