Abstract
Abstract
Background
Lenvatinib is widely used to treat unresectable and advanced thyroid carcinomas. We aimed to determine whether 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) performed 1 week after lenvatinib treatment initiation could predict treatment outcomes.
Results
This was a prospective, nonrandomised, multicentre study. Patients with pathologically confirmed differentiated thyroid carcinoma (DTC) and lesions refractory to radioiodine treatment were eligible for inclusion. Patients were treated with 24 mg lenvatinib as the initial dose and underwent PET/CT examination 1 week after treatment initiation. Contrast-enhanced CT was scheduled at least 4 weeks later as the gold standard for evaluation. The primary endpoint was to evaluate the discrimination power of maximum standardised uptake value (SUVmax) obtained by PET/CT compared to that obtained by contrast-enhanced CT. Evaluation was performed using the area under the receiver operating characteristic (ROC-AUC) curve. Twenty-one patients were included in this analysis. Receiver operating characteristic (ROC) curve analysis yielded an AUC of 0.714 for SUVmax after 1 week of lenvatinib treatment. The best cut-off value for the treatment response for SUVmax was 15.211. The sensitivity and specificity of this cut-off value were 0.583 and 0.857, respectively. The median progression-free survival was 26.3 months in patients with an under-cut-off value and 19.7 months in patients with an over-cut-off value (P = 0.078).
Conclusions
The therapeutic effects of lenvatinib were detected earlier than those of CT because of decreased FDG uptake on PET/CT. PET/CT examination 1 week after the initiation of lenvatinib treatment may predict treatment outcomes in patients with DTC.
Trial registration: This trial was registered in the University Hospital Medical Information Network (UMIN) Clinical Trials Registry (number UMIN000022592) on 6 June, 2016.
Funder
Pfizer Health Research Foundation
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Reference29 articles.
1. La Vecchia C, Malvezzi M, Bosetti C, Garavello W, Bertuccio P, Levi F, et al. Thyroid cancer mortality and incidence: a global overview. Int J Cancer. 2015;136:2187–95. https://doi.org/10.1002/ijc.29251.
2. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49:1374–403. https://doi.org/10.1016/j.ejca.2012.12.027.
3. https://www.nccn.org/store/login/login.aspx?ReturnURL=http://www. NCCN clinical practice guidelines in oncology. Thyroid cancer. http://nccn.org/professionals/physician_gls/pdf/thyroid.pdf. Accessed 15 Feb, 2023.
4. Lubitz CC, Kong CY, McMahon PM, Daniels GH, Chen Y, Economopoulos KP, et al. Annual financial impact of well-differentiated thyroid cancer care in the United States. Cancer. 2014;120:1345–52. https://doi.org/10.1002/cncr.28562.
5. Megwalu UC, Moon PK. Thyroid cancer incidence and mortality trends in the United States: 2000–2018. Thyroid. 2022;32(5):560–70. https://doi.org/10.1089/thy.2021.0662.