Direct reconstruction for simultaneous dual-tracer PET imaging based on multi-task learning

Author:

Zeng Fuzhen,Fang Jingwan,Muhashi Amanjule,Liu HuafengORCID

Abstract

Abstract Background Simultaneous dual-tracer positron emission tomography (PET) imaging can observe two molecular targets in a single scan, which is conducive to disease diagnosis and tracking. Since the signals emitted by different tracers are the same, it is crucial to separate each single tracer from the mixed signals. The current study proposed a novel deep learning-based method to reconstruct single-tracer activity distributions from the dual-tracer sinogram. Methods We proposed the Multi-task CNN, a three-dimensional convolutional neural network (CNN) based on a framework of multi-task learning. One common encoder extracted features from the dual-tracer dynamic sinogram, followed by two distinct and parallel decoders which reconstructed the single-tracer dynamic images of two tracers separately. The model was evaluated by mean squared error (MSE), multiscale structural similarity (MS-SSIM) index and peak signal-to-noise ratio (PSNR) on simulated data and real animal data, and compared to the filtered back-projection method based on deep learning (FBP-CNN). Results In the simulation experiments, the Multi-task CNN reconstructed single-tracer images with lower MSE, higher MS-SSIM and PSNR than FBP-CNN, and was more robust to the changes in individual difference, tracer combination and scanning protocol. In the experiment of rats with an orthotopic xenograft glioma model, the Multi-task CNN reconstructions also showed higher qualities than FBP-CNN reconstructions. Conclusions The proposed Multi-task CNN could effectively reconstruct the dynamic activity images of two single tracers from the dual-tracer dynamic sinogram, which was potential in the direct reconstruction for real simultaneous dual-tracer PET imaging data in future.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Zhejiang Province

Talent Program of Zhejiang Province

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning-based PET image denoising and reconstruction: a review;Radiological Physics and Technology;2024-02-06

2. AI for PET image reconstruction;The British Journal of Radiology;2023-10

3. Dual-Tracer PET Image Separation by Deep Learning: A Simulation Study;Applied Sciences;2023-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3