Abstract
AbstractContemporary science is a field that is becoming increasingly computational. Today’s scientists not only leverage computational tools to conduct their investigations, they often must contribute to the design of the computational tools for their specific research. From a science education perspective, for students to learn authentic science practices, students must learn to use the tools of the trade. This necessity in science education has shaped recent K–12 science standards including the Next Generation Science Standards, which explicitly mention the use of computational tools and simulations. These standards, in particular, have gone further and mandated that computational thinking be taught and leveraged as a practice of science. While computational thinking is not a new term, its inclusion in K–12 science standards has led to confusion about what the term means in the context of science learning and to questions about how to differentiate computational thinking from other commonly taught cognitive skills in science like problem-solving, mathematical reasoning, and critical thinking. In this paper, we propose a definition of computational thinking for science (CT-S) and a framework for its operationalization in K–12 science education. We situate our definition and framework in Activity Theory, from the learning sciences, in order to position computational thinking as an input to and outcome of science learning that is mediated by computational tools.
Funder
division of research on learning in formal and informal settings
Publisher
Springer Science and Business Media LLC
Reference82 articles.
1. Ackermann, E. (1996). Constructionism in practice: Designing, thinking, and learning in a digital world. Routledge.
2. Ah-Nam, L., & Osman, K. (2017). Developing 21st century skills through a constructivist-constructionist learning environment. K-12 STEM Education, 3(2), 205–216. The Institute for the Promotion of Teaching Science and Technology (IPST). https://www.learntechlib.org/p/209542/
3. Aho, A. V. (2011). Ubiquity symposium: Computation and computational thinking. Ubiquity. https://doi.org/10.1145/1922681.1922682
4. Aksit, O., & Wiebe, E. N. (2020). Exploring force and motion concepts in middle grades using computational modeling: A classroom intervention study. Journal of Science Education and Technology, 29(1), 65–82. https://doi.org/10.1007/s10956-019-09800-z
5. Barab, S., Schatz, S., & Scheckler, R. (2004). Using activity theory to conceptualize online community and using online community to conceptualize activity theory. Mind, Culture, and Activity, 11(1), 25–47. https://doi.org/10.1207/s15327884mca1101_3
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献