Accelerating STEM education reform: linked communities of practice promote creation of open educational resources and sustainable professional development

Author:

Kleinschmit Adam J.ORCID,Rosenwald AnneORCID,Ryder Elizabeth F.,Donovan SamORCID,Murdoch Barbara,Grandgenett Nealy F.,Pauley Mark,Triplett Eric,Tapprich William,Morgan WilliamORCID

Abstract

AbstractThe preparation of future scientists, the technical workforce, and informed citizens will require continued transformation to the ways we approach STEM teaching and learning. Undergraduate STEM education is rapidly emerging as a focus of faculty scholarship, but new models for reform need to be developed and tested to accelerate changes in teaching practices. This paper describes a flexible, participant-driven, multi-phase, collaborative approach to developing open educational resources (OERs) that leverages linked communities of practice (CoPs). Equally valuable, our framework for development, adaptation, dissemination, and validation of OERs provides a platform for faculty professional development and sustained support through cooperative mentoring. The three linked CoPs in the framework include incubators for the creation of initial OERs, Faculty Mentoring Networks (FMNs) for the implementation and adaptation of OERs for classroom use, and Education Research Communities to assess the effectiveness of the OERs. The CoPs create numerous benefits for participating faculty, including the ability to collaborate in the Scholarship of Teaching and Learning (SoTL) through scholarly publication of OERs and their assessment; ongoing mentorship in implementation of OERs in the classroom; and development of educational leadership skills and experience. Thus, the three CoPs synergize with one another to build and sustain capacity through providing vetted, up-to-date educational resources, as well as ongoing training and support for faculty. While we developed this approach for the rapidly changing field of bioinformatics, the linked CoP framework will have utility for STEM education reform more broadly and disciplines beyond STEM.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Education

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Open Educational Resources in Supporting Online Education During COVID-19;Promoting Quality Hybrid Learning Through Leadership and Educational Management;2023-12-05

2. Revisiting barriers to implementation of bioinformatics into life sciences education;Frontiers in Education;2023-11-30

3. Modeling a Community of Practice for Global Competence : A Collaborative Autoethnography of College EFL Learners;The Korean Association of General Education;2023-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3