Abstract
AbstractAlthough advising relationships are key for doctoral student success, little research has addressed how they form. Understanding the formation of advising relationships can help contextualize their later development and ultimately support a student’s decision to persist in the doctorate. To understand relationship formation, the purpose of this qualitative study is to identify and describe the types of advisor–advisee selection processes that exist in engineering, science, and math doctoral programs and examine patterns across disciplines within those fields. We conducted interviews with doctoral program directors and engaged in document analysis of graduate student handbooks from 55 doctoral programs in the aforementioned fields in high research institutions across the United States. Using principal–agent theory as a theoretical lens, our findings showed that engineering programs tend to decentralize the advisor selection process by funding students across different funding sources upon enrollment. Contrariwise, science and math programs tended to fund all students in a cohort from a common funding source, which allowed students to have more time to gather information, meet, and select an advisor. These findings also show important nuances when comparing graduate education in these programs that directly impact the doctoral student experience and reiterates the necessity to study these fields separately.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Reference74 articles.
1. Artiles, M. S., & Matusovich, H. M. (2022a). Choosing a doctoral advisor: A study of chemical engineering students’ perspectives using basic needs theory. International Journal of Engineering Education, 38(5), 1212–1222.
2. Artiles, M. S., & Matusovich, H. M. (2022b). Doctoral advisor selection in chemical engineering: Evaluating two programs through principal-agent theory. Studies in Engineering Education. https://doi.org/10.21061/see.57
3. Bair, C. R., & Haworth, J. G. (2004). Doctoral student attrition and persistence: A meta-synthesis of research. In: Higher education: Handbook of theory and research (pp. 481–534). Springer, Dordrecht.
4. Barnard, R. A., & Shultz, G. V. (2020). “Most important is that they figure out how to solve the problem”: How do advisors conceptualize and develop research autonomy in chemistry doctoral students? Higher Education, 79(6), 981–999. https://doi.org/10.1007/s10734-019-00451-y
5. Barnes, B. J., & Austin, A. E. (2009). The role of doctoral advisors: A look at advising from the advisor’s perspective. Innovative Higher Education, 33(5), 297–315. https://doi.org/10.1007/s10755-008-9084-x
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献