Splits in students’ beliefs about learning classical and quantum physics

Author:

Dreyfus Benjamin W.ORCID,Hoehn Jessica R.,Elby Andrew,Finkelstein Noah D.,Gupta Ayush

Abstract

Abstract Background While there has been increasing recognition of the importance of attending to students’ views about what counts as knowing and learning a STEM field, surveys that measure these “epistemological” beliefs are often used in ways that implicitly assume the fields, e.g., “physics,” to be a single domain about which students might have sophisticated or naïve beliefs. We demonstrate this is not necessarily the case and argue for attending to possible differences in students’ epistemological beliefs across different sub-domains of physics. In modern physics and quantum mechanics courses for engineering and physics students, we administered a set of modified Colorado Learning Attitudes about Science Survey (CLASS) items. Each selected item was turned into two items, with the word “physics” changed to “classical physics” in one and “quantum physics” in the other. Results We found significant splits between students’ survey responses about classical vs. quantum physics on some items, both pre- and post-instruction. In classical physics, as compared to quantum physics, students were more likely to report the salience of real-world connections and the possibility of combining mathematical and conceptual reasoning during problem solving. Conclusions These findings suggest that attending to sub-domain specificity of students’ beliefs about physics can be fruitful and ought to influence our instructional choices.

Funder

NSF

Publisher

Springer Science and Business Media LLC

Subject

Education

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Context affects student thinking about sources of uncertainty in classical and quantum mechanics;Physical Review Physics Education Research;2023-11-15

2. Seeing quantum effects in experiments;Physical Review Physics Education Research;2023-10-16

3. Epistemic Beliefs and Physics Teacher Education;The International Handbook of Physics Education Research: Special Topics;2023-03-17

4. Implementation and goals of quantum optics experiments in undergraduate instructional labs;Physical Review Physics Education Research;2023-03-03

5. Intuition in quantum mechanics: Student perspectives and expectations;Physical Review Physics Education Research;2023-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3