Abstract
Abstract
Background
Teachers’ beliefs play an important role in how teachers think about how students learn, and how content should be organized and taught. Integrated STEM is pushing the boundaries of some of the traditional assumptions in education—disciplined-based courses, courses taught independently by teachers, standards and content-driven, and no collaborative planning time for teachers. Six teachers, located in two high schools, participated in a year-long program to develop interdisciplinary collaboration to implement integrated STEM learning in their courses. A qualitative instrumental case study of the two teams of teachers was conducted to gain insights and understandings of the teachers’ beliefs and instructional practices of STEM integration through interdisciplinary approaches in a complex system (i.e., hydroponics).
Results
Themes regarding features, beliefs and practices, and challenges emerged from cross-case analysis of the teachers’ stories, which resulted in two interdisciplinary collaboration models, multi-classroom and extracurricular activity, from each of the teams at each of the two high schools. Multi-classroom and extracurricular activity models had some resemblances, but also had differences. Both cases had the same goals to use real-world problems to help students see STEM connections, learn STEM knowledge and skills, and apply STEM knowledge and skills to solve real-world problems.
Conclusions
Based on teachers’ beliefs and their interdisciplinary STEM collaboration practices, three components were identified. Team size, teaching goal, and collaboration structure highly affect a successful interdisciplinary STEM collaboration model in high school settings. The study also contributes to expend the concept of a continuum of STEM approaches to curriculum integration, disciplinary, multidisciplinary, interdisciplinary, and transdisciplinary (Vasquez, Sneider, & Comer, STEM lesson essentials: Integrating science, technology, engineering, and mathematics, 2013), and provides frameworks for structuring a successful interdisciplinary collaboration model in high school settings.
Funder
National Institute of Food and Agriculture
Publisher
Springer Science and Business Media LLC
Reference78 articles.
1. Al Salami, M. K., Makela, C. J., & de Miranda, M. A. (2015). Assessing changes in teachers’ attitudes toward interdisciplinary STEM teaching. International Journal of Technology and Design Education, 27(1), 63–88 https://doi.org/10.1007/s10798-015-9341-0.
2. Asghar, A., Ellington, R., Rice, E., Johnson, F., & Prime, G. M. (2012). Supporting STEM education in secondary science contexts. Interdisciplinary Journal of Problem-Based Learning, 6(2), 85–125 https://doi.org/10.7771/1541-5015.1349.
3. Baker, M. A., Bunch, J. C., & Kelsey, K. D. (2015). An instrumental case study of effective science integration in a traditional agricultural education program. Journal of Agricultural Education, 56(1), 221–236 https://doi.org/10.5032/jae.2015.01221.
4. Bogdan, R. C., & Biklen, S. K. (1998). Qualitative research for education: an introduction to theory and methods. Needham Heights: Allyn and Bacon.
5. Boyd, A. S. (2017). Social justice literacies in the English classroom: teaching practice in action. New York: Teachers College Press.
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献