Object detection for automotive radar point clouds – a comparison

Author:

Scheiner NicolasORCID,Kraus Florian,Appenrodt Nils,Dickmann Jürgen,Sick Bernhard

Abstract

AbstractAutomotive radar perception is an integral part of automated driving systems. Radar sensors benefit from their excellent robustness against adverse weather conditions such as snow, fog, or heavy rain. Despite the fact that machine-learning-based object detection is traditionally a camera-based domain, vast progress has been made for lidar sensors, and radar is also catching up. Recently, several new techniques for using machine learning algorithms towards the correct detection and classification of moving road users in automotive radar data have been introduced. However, most of them have not been compared to other methods or require next generation radar sensors which are far more advanced than current conventional automotive sensors. This article makes a thorough comparison of existing and novel radar object detection algorithms with some of the most successful candidates from the image and lidar domain. All experiments are conducted using a conventional automotive radar system. In addition to introducing all architectures, special attention is paid to the necessary point cloud preprocessing for all methods. By assessing all methods on a large and open real world data set, this evaluation provides the first representative algorithm comparison in this domain and outlines future research directions.

Publisher

Springer Science and Business Media LLC

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3