A development cycle for automated self-exploration of robot behaviors

Author:

Roehr Thomas M.ORCID,Harnack Daniel,Wöhrle Hendrik,Wiebe Felix,Schilling Moritz,Lima Oscar,Langosz Malte,Kumar Shivesh,Straube Sirko,Kirchner Frank

Abstract

AbstractIn this paper we introduce Q-Rock, a development cycle for the automated self-exploration and qualification of robot behaviors. With Q-Rock, we suggest a novel, integrative approach to automate robot development processes. Q-Rock combines several machine learning and reasoning techniques to deal with the increasing complexity in the design of robotic systems. The Q-Rock development cycle consists of three complementary processes: (1) automated exploration of capabilities that a given robotic hardware provides, (2) classification and semantic annotation of these capabilities to generate more complex behaviors, and (3) mapping between application requirements and available behaviors. These processes are based on a graph-based representation of a robot’s structure, including hardware and software components. A central, scalable knowledge base enables collaboration of robot designers including mechanical, electrical and systems engineers, software developers and machine learning experts. In this paper we formalize Q-Rock’s integrative development cycle and highlight its benefits with a proof-of-concept implementation and a use case demonstration.

Funder

Bundesministerium für Bildung und Forschung

Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI)

Publisher

Springer Science and Business Media LLC

Reference62 articles.

1. Stone P, Brooks R, Brynjolfsson E, Calo R, Etzioni O, Hager G, Hirschberg J, Kalyanakrishnan S, Kamar E, Kraus S, et al. Artificial intelligence and life in 2030: the one hundred year study on artificial intelligence. Technical report, Stanford University. 2016. https://ai100.stanford.edu/sites/g/files/sbiybj9861/f/ai100report10032016fnl_singles.pdf. Accessed 31 May 2021.

2. Siciliano B, Khatib O. Springer Handbook of Robotics. Berlin: Springer; 2016. https://doi.org/10.1007/978-3-540-30301-5.

3. Christensen HI. A roadmap for us robotics – from internet to robotics. 2020 Edition. Technical report, University of California San Diego, Computing Community Consortium, University of Massachusetts Lowell, University of Illinois, Urbana Champaign, University of Southern California. 2020. https://www.therobotreport.com/wp-content/uploads/2020/09/roadmap-2020.pdf. Accessed 31 May 2021.

4. Roehr TM, Harnack D, Lima O, Hendrik W, Kirchner F. Introducing Q-Rock : Towards the Automated Self-Exploration and Qualification of Robot Behaviors. In: ICRA Workshop on Robot Design and Customization. Montreal: 2019. Available at https://www.dfki.de/fileadmin/user_upload/import/10350_20190501_roehr_introducing_qrock.pdf.

5. Wiebe F, Kumar S, Harnack D, Langosz M, Wöhrle H, Kirchner F. Combinatorics of a discrete trajectory space for robot motion planning. In: 2nd IMA Conference on Mathematics of Robotics. Springer: 2021. accepted.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3