Comparative analysis of machine learning algorithms for multi-syndrome classification of neurodegenerative syndromes

Author:

Lampe Leonie,Niehaus Sebastian,Huppertz Hans-Jürgen,Merola Alberto,Reinelt Janis,Mueller Karsten,Anderl-Straub Sarah,Fassbender Klaus,Fliessbach Klaus,Jahn Holger,Kornhuber Johannes,Lauer Martin,Prudlo Johannes,Schneider Anja,Synofzik Matthis,Danek Adrian,Diehl-Schmid Janine,Otto Markus,Villringer Arno,Egger Karl,Hattingen Elke,Hilker-Roggendorf Rüdiger,Schnitzler Alfons,Südmeyer Martin,Oertel Wolfgang,Kassubek Jan,Höglinger Günter,Schroeter Matthias L., ,

Abstract

Abstract Importance The entry of artificial intelligence into medicine is pending. Several methods have been used for the predictions of structured neuroimaging data, yet nobody compared them in this context. Objective Multi-class prediction is key for building computational aid systems for differential diagnosis. We compared support vector machine, random forest, gradient boosting, and deep feed-forward neural networks for the classification of different neurodegenerative syndromes based on structural magnetic resonance imaging. Design, setting, and participants Atlas-based volumetry was performed on multi-centric T1-weighted MRI data from 940 subjects, i.e., 124 healthy controls and 816 patients with ten different neurodegenerative diseases, leading to a multi-diagnostic multi-class classification task with eleven different classes. Interventions N.A. Main outcomes and measures Cohen’s kappa, accuracy, and F1-score to assess model performance. Results Overall, the neural network produced both the best performance measures and the most robust results. The smaller classes however were better classified by either the ensemble learning methods or the support vector machine, while performance measures for small classes were comparatively low, as expected. Diseases with regionally specific and pronounced atrophy patterns were generally better classified than diseases with widespread and rather weak atrophy. Conclusions and relevance Our study furthermore underlines the necessity of larger data sets but also calls for a careful consideration of different machine learning methods that can handle the type of data and the classification task best.

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Neurology (clinical),Neurology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3