Baseline structural MRI and plasma biomarkers predict longitudinal structural atrophy and cognitive decline in early Alzheimer’s disease

Author:

Xie Long,Das Sandhitsu R.,Wisse Laura E. M.,Ittyerah Ranjit,de Flores Robin,Shaw Leslie M.,Yushkevich Paul A.,Wolk David A.,

Abstract

Abstract Background Crucial to the success of clinical trials targeting early Alzheimer’s disease (AD) is recruiting participants who are more likely to progress over the course of the trials. We hypothesize that a combination of plasma and structural MRI biomarkers, which are less costly and non-invasive, is predictive of longitudinal progression measured by atrophy and cognitive decline in early AD, providing a practical alternative to PET or cerebrospinal fluid biomarkers. Methods Longitudinal T1-weighted MRI, cognitive (memory-related test scores and clinical dementia rating scale), and plasma measurements of 245 cognitively normal (CN) and 361 mild cognitive impairment (MCI) patients from ADNI were included. Subjects were further divided into β-amyloid positive/negative (Aβ+/Aβ−)] subgroups. Baseline plasma (p-tau181 and neurofilament light chain) and MRI-based structural medial temporal lobe subregional measurements and their association with longitudinal measures of atrophy and cognitive decline were tested using stepwise linear mixed effect modeling in CN and MCI, as well as separately in the Aβ+/Aβ− subgroups. Receiver operating characteristic (ROC) analyses were performed to investigate the discriminative power of each model in separating fast and slow progressors (first and last terciles) of each longitudinal measurement. Results A total of 245 CN (35.0% Aβ+) and 361 MCI (53.2% Aβ+) participants were included. In the CN and MCI groups, both baseline plasma and structural MRI biomarkers were included in most models. These relationships were maintained when limited to the Aβ+ and Aβ− subgroups, including Aβ− CN (normal aging). ROC analyses demonstrated reliable discriminative power in identifying fast from slow progressors in MCI [area under the curve (AUC): 0.78–0.93] and more modestly in CN (0.65–0.73). Conclusions The present data support the notion that plasma and MRI biomarkers, which are relatively easy to obtain, provide a prediction for the rate of future cognitive and neurodegenerative progression that may be particularly useful in clinical trial stratification and prognosis. Additionally, the effect in Aβ− CN indicates the potential use of these biomarkers in predicting a normal age-related decline.

Funder

National Institutes of Health

MultiPark - A strategic Research Area at Lund University

Fondation Philippe Chatrier

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3