Imipramine and olanzapine block apoE4-catalyzed polymerization of Aβ and show evidence of improving Alzheimer’s disease cognition

Author:

Johnson Noah R.,Wang Athena C.-J.,Coughlan Christina,Sillau Stefan,Lucero Esteban,Viltz Lisa,Markham Neil,Allen Cody,Dhanasekaran A. Ranjitha,Chial Heidi J.,Potter Huntington

Abstract

Abstract Background The apolipoprotein E (APOE) ε4 allele confers the strongest risk for late-onset Alzheimer’s disease (AD) besides age itself, but the mechanisms underlying this risk are debated. One hypothesis supported by evidence from multiple labs is that apoE4 binds to the amyloid-β (Aβ) peptide and catalyzes its polymerization into neurotoxic oligomers and fibrils. Inhibiting this early step in the amyloid cascade may thereby reduce or prevent neurodegeneration and AD. Methods Using a design of experiments (DOE) approach, we developed a high-throughput assay to identify inhibitors of apoE4-catalyzed polymerization of Aβ into oligomers and fibrils. We used it to screen the NIH Clinical Collection of small molecule drugs tested previously in human clinical trials. We then evaluated the efficacy and cytotoxicity of the hit compounds in primary neuron models of apoE4-induced Aβ and phosphorylated tau aggregation. Finally, we performed retrospective analyses of the National Alzheimer’s Coordinating Center (NACC) clinical dataset, using Cox regression and Cox proportional hazards models to determine if the use of two FDA-approved hit compounds was associated with better cognitive scores (Mini-Mental State Exam), or improved AD clinical diagnosis, when compared with other medications of the same clinical indication. Results Our high-throughput screen identified eight blood-brain barrier (BBB)-permeable hit compounds that reduced apoE4-catalyzed Aβ oligomer and fibril formation in a dose-dependent manner. Five hit compounds were non-toxic toward cultured neurons and also reduced apoE4-promoted Aβ and tau neuropathology in a dose-dependent manner. Three of the five compounds were determined to be specific inhibitors of apoE4, whereas the other two compounds were Aβ or tau aggregation inhibitors. When prescribed to AD patients for their normal clinical indications, two of the apoE4 inhibitors, imipramine and olanzapine, but not other (non-hit) antipsychotic or antidepressant medications, were associated with improvements in cognition and clinical diagnosis, especially among APOE4 carriers. Conclusions The critical test of any proposed AD mechanism is whether it leads to effective treatments. Our high-throughput screen identified two promising FDA-approved drugs, imipramine and olanzapine, which have no structural, functional, or clinical similarities other than their shared ability to inhibit apoE4-catalyzed Aβ polymerization, thus identifying this mechanism as an essential contribution of apoE4 to AD.

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Neurology (clinical),Neurology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3