Hippocampus-centred grey matter covariance networks predict the development and reversion of mild cognitive impairment

Author:

Dang Mingxi,Yang Caishui,Chen Kewei,Lu Peng,Li He,Zhang Zhanjun,

Abstract

Abstract Background Mild cognitive impairment (MCI) has been thought of as the transitional stage between normal ageing and Alzheimer’s disease, involving substantial changes in brain grey matter structures. As most previous studies have focused on single regions (e.g. the hippocampus) and their changes during MCI development and reversion, the relationship between grey matter covariance among distributed brain regions and clinical development and reversion of MCI remains unclear. Methods With samples from two independent studies (155 from the Beijing Aging Brain Rejuvenation Initiative and 286 from the Alzheimer’s Disease Neuroimaging Initiative), grey matter covariance of default, frontoparietal, and hippocampal networks were identified by seed-based partial least square analyses, and random forest models were applied to predict the progression from normal cognition to MCI (N-t-M) and the reversion from MCI to normal cognition (M-t-N). Results With varying degrees, the grey matter covariance in the three networks could predict N-t-M progression (AUC = 0.692–0.792) and M-t-N reversion (AUC = 0.701–0.809). Further analyses indicated that the hippocampus has emerged as an important region in reversion prediction within all three brain networks, and even though the hippocampus itself could predict the clinical reversion of M-t-N, the grey matter covariance showed higher prediction accuracy for early progression of N-t-M. Conclusions Our findings are the first to report grey matter covariance changes in MCI development and reversion and highlight the necessity of including grey matter covariance changes along with hippocampal degeneration in the early detection of MCI and Alzheimer’s disease.

Funder

China Postdoctoral Science Foundation

State Key Program of National Natural Science of China

Funds for International Cooperation and Exchange of the National Natural Science Foundation of China

National Science Fund for Distinguished Young Scholars

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3