Author:
Fernandez-Alvarez Marina,Atienza Mercedes,Cantero Jose L.
Abstract
Abstract
Background
Non-modifiable risk factors of Alzheimer’s disease (AD) have lifelong effects on cortical integrity that could be mitigated if identified at early stages. However, it remains unknown whether cortical microstructure is affected in older individuals with non-modifiable AD risk factors and whether altered cortical tissue integrity produces abnormalities in brain functional networks in this AD-risk population.
Methods
Using relative T1w/T2w (rT1w/T2w) ratio maps, we have compared tissue integrity of normal-appearing cortical GM between controls and cognitively normal older adults with either APOE4 (N = 50), with a first-degree family history (FH) of AD (N = 52), or with the co-occurrence of both AD risk factors (APOE4+FH) (N = 35). Additionally, individuals with only one risk factor (APOE4 or FH) were combined into one group (N = 102) and compared with controls. The same number of controls matched in age, sex, and years of education was employed for each of these comparisons. Group differences in resting state functional connectivity (rs-FC) patterns were also investigated, using as FC seeds those cortical regions showing significant changes in rT1w/T2w ratios.
Results
Overall, individuals with non-modifiable AD risk factors exhibited significant variations in rT1w/T2w ratios compared to controls, being APOE4 and APOE4+FH at opposite ends of a continuum. The co-occurrence of APOE4 and FH was further accompanied by altered patterns of rs-FC.
Conclusions
These findings may have practical implications for early detection of cortical abnormalities in older populations with APOE4 and/or FH of AD and open new avenues to monitor changes in cortical tissue integrity associated with non-modifiable AD risk factors.
Publisher
Springer Science and Business Media LLC
Subject
Cognitive Neuroscience,Neurology (clinical),Neurology
Reference82 articles.
1. World Health Organization. 2021. https://www.who.int/news-room/fact-sheets/detail/dementia.
2. van Duijn CM, Clayton D, Chandra V, Fratiglioni L, Graves AB, Heyman A, et al. Familial aggregation of Alzheimer’s disease and related disorders: a collaborative re-analysis of case-control studies. Int J Epidemiol. 1991;20(Suppl 2):S13–20.
3. Fratiglioni L, Ahlbom A, Viitanen M, Winblad B. Risk factors for late-onset Alzheimer’s disease: a population-based, case-control study. Ann Neurol. 1993;33:258–66.
4. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261:921–3.
5. Tsai MS, Tangalos EG, Petersen RC, Smith GE, Schaid DJ, Kokmen E, et al. Apolipoprotein E: risk factor for Alzheimer disease. Am J Hum Genet. 1994;54:643–9.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献